Hyperfast Rectifier, 2 x 15 A FRED Pt® G5 #### **LINKS TO ADDITIONAL RESOURCES** | PRIMARY CHARACTERISTICS | | | | | | | |--|----------------|--|--|--|--|--| | I _{F(AV)} 2 x 15 A | | | | | | | | V _R | 600 V | | | | | | | V _F at I _F at 125 °C | 1.3 V | | | | | | | t _{rr} (typ.) | 19 ns | | | | | | | T _J max. | 175 °C | | | | | | | Package TO-3PF | | | | | | | | Circuit configuration | Common cathode | | | | | | #### **FEATURES** Best in class forward voltage drop and switching losses trade off • Optimized for high speed operation • 175 °C maximum operating junction temperature RoHS **HALOGEN** FREE · Polyimide passivation chip for high reliability standard Fully isolated package (V_{INS} = 2500 V_{RMS}) True 2 pin package Material categorization: for definitions of compliance please see www.vishav.com/doc?99912 #### **DESCRIPTION / APPLICATIONS** Featuring a unique combination of low conduction and switching losses, this rectifier is the right choice for soft switched and resonant converters, as well as medium frequency hard switching converters. This device is specifically designed to improve as output rectifier for DC/DC stage in resonant converters and as PFC rectifier for aircon and industrial power supplies. #### **MECHANICAL DATA** Case: TO-3PF Molding compound meets UL 94 V-0 flammability rating Terminals: matte tin plated leads, solderable per J-STD-002 | ABSOLUTE MAXIMUM RATINGS | | | | | | | |--|-----------------------------------|---|-------------|-------|--|--| | PARAMETER | SYMBOL | TEST CONDITIONS | VALUES | UNITS | | | | Repetitive peak reverse voltage | V_{RRM} | | 600 | V | | | | Average rectified forward current in DC, per leg | I _{F(AV)} | T _C = 110 °C, DC | 15 | ۸ | | | | Non-repetitive peak surge current, per leg | I _{FSM} | $T_C = 25$ °C, $t_p = 10$ ms, sine wave | 205 | A | | | | Operating junction and storage temperature | T _J , T _{Stg} | | -55 to +175 | °C | | | | ELECTRICAL SPECIFICATIONS (T _J = 25 °C unless otherwise specified) | | | | | | | | |--|--|--|-----|-----|-----|-----|--| | PARAMETER | SYMBOL TEST CONDITIONS MIN. TYP. MAX. UN | | | | | | | | Breakdown voltage,
blocking voltage | V _{BR} ,
V _R | I _R = 100 μA | 600 | - | - | ., | | | Forward voltage, per leg | V _F | I _F = 15 A | - | 1.6 | 2.1 | - V | | | | | I _F = 15 A, T _J = 125 °C | - | 1.3 | - | | | | Reverse leakage current, per leg | I _R | V _R = V _R rated | - | - | 10 | | | | | | $T_J = 125 ^{\circ}\text{C}, V_R = V_R \text{rated}$ | - | - | 500 | μA | | | Junction capacitance, per leg | C _T | V _R = 600 V | - | 19 | - | pF | | | DYNAMIC RECOVERY CHARACTERISTICS (T _J = 25 °C unless otherwise specified) | | | | | | | | |---|------------------|------------------------------|---|------|------|------|-------| | PARAMETER | SYMBOL | TEST CONDITIONS | | MIN. | TYP. | MAX. | UNITS | | | | $I_F = 1.0 \text{ A,dI}_F/c$ | $I_F = 1.0 \text{ A,dI}_F/\text{dt} = 100 \text{ A/}\mu\text{s}, V_R = 30 \text{ V}$ | | 19 | - | | | Reverse recovery time, per leg | t _{rr} | T _J = 25 °C | | - | 23 | - | ns | | | | T _J = 125 °C | | - | 36 | - | | | Dook recovery ourrent, per les | 1 | T _J = 25 °C | 125 °C | - | 12 | - | A nC | | Peak recovery current, per leg | I _{RRM} | T _J = 125 °C | | - | 20 | - | | | Deviana vacavani abavaa navlas | 0 | T _J = 25 °C | | - | 180 | - | | | Reverse recovery charge, per leg | Q _{rr} | T _J = 125 °C | | - | 472 | - | nc nc | | Deviana vacavani tima marilar | | T _J = 25 °C | | - | 33 | - | | | Reverse recovery time, per leg | t _{rr} | T _J = 125 °C | | - | 44 | - | ns | | Deel general content | | T _J = 25 °C | $I_F = 15 \text{ A}$
$dI_F/dt = 1000 \text{ A/}\mu\text{s}$
$V_R = 400 \text{ V}$ | - | 13 | - | Δ. | | Peak recovery current, per leg I _{RI} | I _{RRM} | T _J = 125 °C | | - | 21 | - | A | | | | T _J = 25 °C | | - | 220 | - | 0 | | Reverse recovery charge, per leg | Q _{rr} | T _J = 125 °C | | - | 578 | - | nC | | THERMAL - MECHANICAL SPECIFICATIONS | | | | | | | | |--|-----------------------------------|-------------------|------------|------|------------|------------------------|--| | PARAMETER | SYMBOL | TEST CONDITIONS | MIN. | TYP. | MAX. | UNITS | | | Thermal resistance, junction-to-case, per leg | R _{thJC} | | - | - | 3.1 | °C/W | | | Weight | | | - | 2.0 | - | g | | | Mounting torque | | | 4
(3.5) | - | 6
(5.3) | kgf · cm
(lbf · in) | | | Maximum junction and storage temperature range | T _J , T _{Stg} | | -55 | - | 175 | °C | | | Marking device | | Case style TO-3PF | C5ZX3006FP | | | | | Fig. 1 - Forward Voltage Drop Characteristics, Per Leg Fig. 2 - Typical Values of Reverse Current vs. Reverse Voltage, Per Leg Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage, Per Leg Fig. 4 - Maximum Allowable Case Temperature vs. Average Forward Current, Per Leg Fig. 5 - Forward Power Loss Characteristics, Per Leg Fig. 6 - Transient Thermal Impedance, Junction to Case, Per Leg Fig. 7 - Typical Reverse Recovery Time vs. dl_F/dt, Per Leg Fig. 8 - Typical Reverse Recovery Charge vs. dl_F/dt, Per Leg Fig. 9 - Typical Reverse Recovery Current vs. dl_F/dt, Per Leg Fig. 10 - Typical Reverse Recovery Time vs. dI_F/dt , Per Leg www.vishay.com Fig. 11 - Typical Reverse Recovery Charge vs. dl_F/dt, Per Leg Fig. 12 - Typical Reverse Recovery Current vs. dl_F/dt, Per Leg Fig. 13 - Reverse Recovery Waveform and Definitions #### Notes - (1) di_F/dt rate of change of current through zero crossing - (2) I_{RRM} peak reverse recovery current - (3) t_{rr} reverse recovery time measured from t_0 , crossing point of negative going I_F , to point $t_{10\%}$, 0.1 I_{RRM} - $^{(4)}$ Q_{rr} area under curve defined by t_0 and $t_{10}\,\%$ $$Q_{rr} = \int_{t_0}^{t_{10}\%} I(t)dt$$ (5) di_(rec)M/dt - peak rate of change of current during t_b portion of t_{rr} ### **ORDERING INFORMATION TABLE** Device code 1 - Vishay Semiconductors product C = common cathode 5 = FRED generation 5 4 - Package: Z = TO-3PF package 5 - X = hyperfast recovery 6 - Current rating (30 = 30 A) 7 - Voltage rating (06 = 600 V) 8 - FP = FullPAK 9 - Environmental digit: N3 = halogen-free, RoHS-compliant, and totally lead (Pb)-free | ORDERING INFORMATION (Example) | | | | | | | |---|----|-----|-------------------------|--|--|--| | PREFERRED P/N QUANTITY PER TUBE BASE QUANTITY PACKAGING DESCRIPTION | | | | | | | | VS-C5ZX3006FP-N3 | 25 | 300 | Antistatic plastic tube | | | | | LINKS TO RELATED DOCUMENTS | | | |----------------------------|--------|--------------------------| | Dimensions | TO-3PF | www.vishay.com/doc?96691 | | Part marking information | TO-3PF | www.vishay.com/doc?96690 | ## TO-3PF ### **DIMENSIONS** in millimeters | SYMBOL | MIN. | NOM. | MAX. | | | |--------|-------|----------|-------|--|--| | A | 5.30 | 5.50 | 5.70 | | | | A1 | 3.10 | 3.30 | 3.50 | | | | b | 0.65 | 0.85 | 0.95 | | | | b1 | 1.80 | 2.00 | 2.20 | | | | С | 0.80 | 0.90 | 1.10 | | | | D | 26.30 | 26.50 | 26.70 | | | | D1 | 22.80 | 23.00 | 23.20 | | | | D2 | 9.80 | 10.00 | 10.20 | | | | D3 | 1.80 | 2.00 | 2.20 | | | | E | 15.30 | 15.50 | 15.70 | | | | E1 | 3.80 | 4.00 | 4.20 | | | | е | | 5.45 BSC | | | | | F | 2.80 | 3.00 | 3.20 | | | | F1 | 1.80 | 2.00 | 2.20 | | | | L | 19.10 | 19.30 | 19.50 | | | | L1 | 4.20 | 4.50 | 5.20 | | | | Q | 4.30 | 4.50 | 4.70 | | | | ØP | 3.40 | 3.60 | 3.80 | | | ### **Legal Disclaimer Notice** Vishay ### **Disclaimer** ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE. Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product. Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability. Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein. Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links. Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.