AC and Pulse Metallized Polypropylene Film Capacitors
MKP Radial Potted Type

FEATURES
• 5 mm to 52.5 mm lead pitch; 7.5 mm bent back pitch
• Low contact resistance
• Low loss dielectric
• Small dimensions for high density packaging
• Supplied loose in box and taped on reel or ammopack
• Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

APPLICATIONS
• Where steep pulses occur e.g. SMPS (switch mode power supplies)
• Electronic lighting e.g. ballast
• Motor control circuits
• High frequency and pulse operations
• Deflection circuits in TV-sets (S-correction)
• Loudspeaker crossover networks, storage, filter, timing and sample and hold circuits

QUICK REFERENCE DATA

<table>
<thead>
<tr>
<th>Capacitance range (E24 series)</th>
<th>0.00047 μF to 82 μF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacitance tolerance</td>
<td>± 5 %</td>
</tr>
<tr>
<td>Climatic testing class according to IEC 60068-1</td>
<td>55/110/56</td>
</tr>
<tr>
<td>Rated DC temperature</td>
<td>85 °C</td>
</tr>
<tr>
<td>Rated AC temperature</td>
<td>85 °C</td>
</tr>
<tr>
<td>Maximum application temperature</td>
<td>110 °C</td>
</tr>
<tr>
<td>Maximum operating temperature for limited time</td>
<td>125 °C</td>
</tr>
<tr>
<td>Reference specifications</td>
<td>IEC 60384-17</td>
</tr>
<tr>
<td>Dielectric</td>
<td>Polypropylene film</td>
</tr>
<tr>
<td>Electrodes</td>
<td>Metallized</td>
</tr>
<tr>
<td>Construction</td>
<td>Mono and internal serial construction</td>
</tr>
<tr>
<td>Encapsulation</td>
<td>Flame retardant plastic case and epoxy resin</td>
</tr>
<tr>
<td></td>
<td>UL-class 94 V-0</td>
</tr>
<tr>
<td>Leads</td>
<td>Tinned wire</td>
</tr>
<tr>
<td>Marking</td>
<td>C-value; tolerance; rated voltage; manufacturer’s type; code for dielectric material; manufacturer location; manufacturer’s logo; year and week</td>
</tr>
</tbody>
</table>

Note
• For more detailed data and test requirements, contact dc-film@vishay.com

VOLTAGE RATINGS

<table>
<thead>
<tr>
<th>Rated DC voltage</th>
<th>160</th>
<th>250</th>
<th>400</th>
<th>630</th>
<th>850</th>
<th>1000</th>
<th>1250</th>
<th>1600</th>
<th>2000</th>
<th>2500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated AC voltage</td>
<td>110</td>
<td>160</td>
<td>200</td>
<td>220</td>
<td>300</td>
<td>350</td>
<td>450</td>
<td>550</td>
<td>700</td>
<td>900</td>
</tr>
<tr>
<td>Rated peak to peak voltage</td>
<td>310</td>
<td>450</td>
<td>560</td>
<td>620</td>
<td>850</td>
<td>1000</td>
<td>1250</td>
<td>1600</td>
<td>2000</td>
<td>2500</td>
</tr>
</tbody>
</table>

Notes
(1) Rated AC voltage is 600 V_{AC} for pitch ≥ 37.5 mm
(2) Rated AC voltage is 800 V_{AC} for pitch ≥ 37.5 mm
COMPOSITION OF CATALOG NUMBER

<table>
<thead>
<tr>
<th>Multiplier (nF)</th>
<th>Capacitance Code (numerically)</th>
<th>Voltage (V<sub>DC</sub>)</th>
<th>Pitch Code</th>
<th>Special Code for Terminal</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td></td>
<td>016 = 160</td>
<td>5</td>
<td>2 pins</td>
</tr>
<tr>
<td>0.1</td>
<td></td>
<td>025 = 250</td>
<td>7.5</td>
<td>4 pins P<sub>2</sub> = 10.2 mm</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>040 = 400</td>
<td>10</td>
<td>4 pins P<sub>2</sub> = 20.3 mm</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>063 = 630</td>
<td>15</td>
<td>(F) Customized</td>
</tr>
<tr>
<td>100</td>
<td></td>
<td>085 = 850</td>
<td>22.5</td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td></td>
<td>100 = 1000</td>
<td>27.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>125 = 1250</td>
<td>37.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>160 = 1600</td>
<td>52.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>200 = 2000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>250 = 2500</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example:
- 147: 470 pF 0.00047 μF
- 210: 1 nF 0.001 μF
- 310: 10 nF 0.01 μF
- 440: 100 nF 0.1 μF
- 510: 1000 nF 1.0 μF
- 610: 10 000 nF 10.0 μF

Notes:
- For detailed tape specifications refer to packaging information www.vishay.com/doc?28139

(1) Packaging will be bulk for all capacitors with pitch ≤ 15 mm and such with long leads (> 5 mm). Capacitors with short leads up to 5 mm and pitch > 15 mm will be in tray and asking code will be "T".

<table>
<thead>
<tr>
<th>Type</th>
<th>Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>J ± 5 %</td>
</tr>
<tr>
<td></td>
<td>A Special tolerance</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>It (mm)</th>
<th>Lead Length Code</th>
<th>Pitch (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5 ± 1.0/- 0.5</td>
<td>A</td>
<td>≤ 10</td>
</tr>
<tr>
<td>3.5 ± 0.3</td>
<td>P</td>
<td>≥ 15</td>
</tr>
<tr>
<td>5 ± 1</td>
<td>M</td>
<td>All</td>
</tr>
<tr>
<td>25 ± 2</td>
<td>I</td>
<td>All</td>
</tr>
</tbody>
</table>

0: Space holder

<table>
<thead>
<tr>
<th>Packing Code</th>
<th>Packing Style</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>B/T</td>
<td>Bulk/loose (1)</td>
<td>Excluding bent back</td>
</tr>
<tr>
<td>R</td>
<td>Tape and reel; (H: 16 mm; 500 mm)</td>
<td>For bent back only</td>
</tr>
<tr>
<td>Z</td>
<td>Tape and reel; (H: 16 mm; 356 mm)</td>
<td>For bent back only</td>
</tr>
<tr>
<td>H</td>
<td>Ammo (H: 16 mm)</td>
<td>For bent back only</td>
</tr>
<tr>
<td>W</td>
<td>Tape and reel (H: 18.5 mm; 500 mm)</td>
<td>Pitch 5 mm to 22.5 mm</td>
</tr>
<tr>
<td>G</td>
<td>Ammo (H: 18.5 mm)</td>
<td>Pitch ≤ 10 mm</td>
</tr>
</tbody>
</table>

Revision: 03-Jun-15

For technical questions, contact: dc-film@vishay.com

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
ELECTRICAL DATA (For Detailed Ratings go to www.vishay.com/doc?28182)

<table>
<thead>
<tr>
<th>U_{RDC} (V)</th>
<th>CAP. (μF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>160</td>
<td>0.011 min.</td>
</tr>
<tr>
<td></td>
<td>82 max.</td>
</tr>
<tr>
<td>250</td>
<td>0.010 min.</td>
</tr>
<tr>
<td></td>
<td>62 max.</td>
</tr>
<tr>
<td>400</td>
<td>0.0043 min.</td>
</tr>
<tr>
<td></td>
<td>27 max.</td>
</tr>
<tr>
<td>630</td>
<td>0.0015 min.</td>
</tr>
<tr>
<td></td>
<td>15 max.</td>
</tr>
<tr>
<td>850</td>
<td>0.001 min.</td>
</tr>
<tr>
<td></td>
<td>10 max.</td>
</tr>
<tr>
<td>1000</td>
<td>0.00047 min.</td>
</tr>
<tr>
<td></td>
<td>6.8 max.</td>
</tr>
<tr>
<td>1250</td>
<td>0.00047 min.</td>
</tr>
<tr>
<td></td>
<td>5.1 max.</td>
</tr>
<tr>
<td>1600</td>
<td>0.00047 min.</td>
</tr>
<tr>
<td></td>
<td>2.7 max.</td>
</tr>
<tr>
<td>2000</td>
<td>0.00047 min.</td>
</tr>
<tr>
<td></td>
<td>1.6 max.</td>
</tr>
<tr>
<td>2500</td>
<td>0.00047 min.</td>
</tr>
<tr>
<td></td>
<td>0.68 max.</td>
</tr>
</tbody>
</table>

DIMENSIONS in millimeters

Note
- $|F-F'| < 0.3\ mm$
- $F = 7.5\ mm + 0.6\ mm / - 0.1\ mm$
- $\Ø\ dt \pm 10\%\ of\ standard\ diameter\ specified$
MOUNTING

Normal Use
The capacitors are designed for mounting on printed-circuit boards. The capacitors packed in bandoliers are designed for mounting on printed-circuit boards by means of automatic insertion machines.
For detailed tape specifications refer to “Packaging Information” www.vishay.com/doc?28139

Specific Method of Mounting to Withstand Vibration and Shock
In order to withstand vibration and shock tests, it must be ensured that the stand-off pips are in good contact with the printed-circuit board:
• For original pitch = 15 mm the capacitors shall be mechanically fixed by the leads
• For larger pitches the capacitors shall be mounted in the same way and the body clamped

Space Requirements on Printed-Circuit Board
The maximum length and width of film capacitors is shown in the drawing:
For products with pitch ≤ 15 mm, \(\Delta w = \Delta l = 0.3 \text{ mm and } \Delta h = 0.1 \text{ mm} \)
For products with 15 mm < pitch ≤ 27.5 mm, \(\Delta w = \Delta l = 0.5 \text{ mm and } \Delta h = 0.1 \text{ mm} \)
For products with pitch = 37.5 mm \(\Delta w = \Delta l = 0.7 \text{ mm and } \Delta h = 0.5 \text{ mm} \)
For products with pitch = 52.5 mm, \(\Delta w = \Delta l = 1 \text{ mm and } \Delta h = 0.5 \text{ mm} \)
Eccentricity as in drawing. The maximum eccentricity is smaller than or equal to the lead diameter of the product concerned.

SOLDERING CONDITIONS
For general soldering conditions and wave soldering profile we refer to the document “Soldering Conditions Vishay Film Capacitors”: www.vishay.com/doc?28171

STORAGE TEMPERATURE
Storage temperature: \(T_{stg} = -25 \degree \text{C to } +35 \degree \text{C with RH maximum 75 } \% \text{ without condensation.} \)

RATINGS AND CHARACTERISTICS REFERENCE CONDITIONS
Unless otherwise specified, all electrical values apply to an ambient free temperature of 23 \degree \text{C ± 1 } \degree \text{C, an atmospheric pressure of 86 kPa to 106 kPa and a relative humidity of 50 } \% \pm 2 \text{.}
For reference testing, a conditioning period shall be applied over 96 h ± 4 h by heating the products in a circulating air oven at the rated temperature and a relative humidity not exceeding 20 \%.
CHARACTERISTICS

Capacitance as a function of ambient temperature (typical curve)
(1 kHz)

Impedance as a function of frequency (typical curve)

Max. DC and AC voltage as function of temperature

Maximum allowed component temperature rise (ΔT) as a function of ambient temperature (T_{amb})

Insulation resistance as a function of ambient temperature
(typical curve)
Max. RMS voltage as function of frequency (630 V)

Max. RMS voltage as function of frequency (850 V)

Max. RMS voltage as function of frequency (1000 V)

Max RMS voltage as function of frequency (630 V)

Max. RMS voltage as function of frequency (850 V)

Max. RMS voltage as function of frequency (1000 V)

Max RMS voltage as function of frequency (630 V)

Max. RMS voltage as function of frequency (850 V)

Max. RMS voltage as function of frequency (1000 V)
Max. RMS voltage as function of frequency (1250 V)

Max. RMS voltage as function of frequency (1600 V)

Max. RMS voltage as function of frequency (2000 V)

For technical questions, contact: dc-film@vishay.com

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
Max. RMS voltage as function of frequency (2500 V)

- $T_{amb} \leq 85 \, ^\circ C$, 2500 VDC
- $85 \, ^\circ C < T_{amb} \leq 110 \, ^\circ C$, 2500 VDC

Maximum IRMS current in function of the ambient temperature

- $T_{amb} \leq 85 \, ^\circ C$, 2500 VDC
- $85 \, ^\circ C < T_{amb} \leq 110 \, ^\circ C$, 2500 VDC
Tangent of Loss Angle as a Function of Frequency (Typical Curve)

160 V:
- $C \leq 0.018 \mu F$, curve 1
- $0.018 < C \leq 0.12 \mu F$, curve 2
- $0.12 < C \leq 0.16 \mu F$, curve 5
- $0.16 < C \leq 0.33 \mu F$, curve 6
- $0.33 < C \leq 0.47 \mu F$, curve 7
- $0.47 < C \leq 0.91 \mu F$, curve 10
- $0.91 < C \leq 1.1 \mu F$, curve 11
- $1.1 < C \leq 1.6 \mu F$, curve 12
- $1.6 < C \leq 2.4 \mu F$, curve 13
- $2.4 < C \leq 3 \mu F$, curve 14
- $3 < C \leq 5.6 \mu F$, curve 15
- $5.6 < C \leq 43 \mu F$, curve 18
- $43 < C \leq 82 \mu F$, curve 20

250 V:
- $C \leq 0.043 \mu F$, curve 2
- $0.043 < C \leq 0.091 \mu F$, curve 3
- $0.091 < C \leq 0.11 \mu F$, curve 5
- $0.11 < C \leq 0.43 \mu F$, curve 6
- $0.33 < C \leq 0.47 \mu F$, curve 7
- $0.43 < C \leq 0.91 \mu F$, curve 10
- $0.91 < C \leq 3.3 \mu F$, curve 12
- $3.3 < C \leq 5.6 \mu F$, curve 13
- $5.6 < C \leq 33 \mu F$, curve 18
- $33 < C \leq 62 \mu F$, curve 20

400 V:
- $C \leq 0.010 \mu F$, curve 1
- $0.010 < C \leq 0.036 \mu F$, curve 2
- $0.036 < C \leq 0.043 \mu F$, curve 3
- $0.043 < C \leq 0.18 \mu F$, curve 4
- $0.18 < C \leq 0.43 \mu F$, curve 8
- $0.43 < C \leq 0.75 \mu F$, curve 10
- $0.75 < C \leq 3.0 \mu F$, curve 11
- $3.3 < C \leq 15 \mu F$, curve 17
- $15 < C \leq 27 \mu F$, curve 19

630 V:
- $C \leq 0.018 \mu F$, curve 1
- $0.018 < C \leq 0.024 \mu F$, curve 2
- $0.024 < C \leq 0.043 \mu F$, curve 3
- $0.043 < C \leq 0.11 \mu F$, curve 4
- $0.11 < C \leq 0.24 \mu F$, curve 7
- $0.24 < C \leq 2.4 \mu F$, curve 9
- $2.4 < C \leq 8.2 \mu F$, curve 16
- $8.2 < C \leq 15 \mu F$, curve 19

850 V:
- $C \leq 0.0091 \mu F$, curve 1
- $0.0091 < C \leq 0.051 \mu F$, curve 2
- $0.051 < C \leq 0.12 \mu F$, curve 3
- $0.12 < C \leq 0.68 \mu F$, curve 4
- $0.68 < C \leq 1.3 \mu F$, curve 6
- $1.1 < C \leq 1.6 \mu F$, curve 12
- $1.6 < C \leq 2.4 \mu F$, curve 13
- $2.4 < C \leq 3 \mu F$, curve 14
- $3 < C \leq 5.6 \mu F$, curve 15
- $5.6 < C \leq 43 \mu F$, curve 18
- $43 < C \leq 82 \mu F$, curve 20

1000 V:
- $C \leq 0.015 \mu F$, curve 1
- $0.015 < C \leq 0.056 \mu F$, curve 2
- $0.056 < C \leq 0.10 \mu F$, curve 3
- $0.1 < C \leq 0.91 \mu F$, curve 4
- $1 < C \leq 2 \mu F$, curve 5
- $2.4 < C \leq 8.2 \mu F$, curve 16
- $8.2 < C \leq 15 \mu F$, curve 19

1250 V:
- $C \leq 0.033 \mu F$, curve 1
- $0.033 < C \leq 0.091 \mu F$, curve 2
- $0.091 < C \leq 0.68 \mu F$, curve 3
- $3.3 < C \leq 15 \mu F$, curve 17
- $15 < C \leq 27 \mu F$, curve 19

1600 V:
- $C \leq 0.0091 \mu F$, curve 1
- $0.0091 < C \leq 0.27 \mu F$, curve 2
- $0.27 < C \leq 0.36 \mu F$, curve 3
- $0.36 < C \leq 1 \mu F$, curve 5

2000 V:
- $C \leq 0.018 \mu F$, curve 1
- $0.018 < C \leq 0.22 \mu F$, curve 2
- $0.22 < C \leq 1 \mu F$, curve 4
- $1 < C \leq 2 \mu F$, curve 5

2500 V:
- $C \leq 0.082 \mu F$, curve 1
- $0.082 < C \leq 0.39 \mu F$, curve 2
- $0.39 < C \leq 0.68 \mu F$, curve 4

For technical questions, contact: dc-film@vishay.com

This document is subject to change without notice. The products described herein and this document are subject to specific disclaimers, set forth at www.vishay.com/doc?91000
POWER DISSIPATION AND MAXIMUM COMPONENT TEMPERATURE RISE

The power dissipation must be limited in order not to exceed the maximum allowed component temperature rise as a function of the free air ambient temperature.

The power dissipation can be calculated according type detail specification “HQN-384-01/101: Technical information film capacitors with the typical tgd of the curves.”.

The component temperature rise (ΔT) can be measured (see section “Measuring the component temperature” for more details) or calculated by ΔT = P/G:

- ΔT = component temperature rise (°C)
- P = power dissipation of the component (mW)
- G = heat conductivity of the component (mW/°C)

MEASURING THE COMPONENT TEMPERATURE

A thermocouple must be attached to the capacitor body as in:

The temperature is measured in unloaded (T_{amb}) and maximum loaded condition (T_C).

The temperature rise is given by ΔT = T_C - T_{amb}.

To avoid radiation or convection, the capacitor should be tested in a wind-free box.
APPLICATION NOTE AND LIMITING CONDITIONS
For capacitors connected in parallel, normally the proof voltage and possibly the rated voltage must be reduced. For information depending of the capacitance value and the number of parallel connections contact: dc-film@vishay.com

These capacitors are not suitable for mains applications as across-the-line capacitors without additional protection, as described hereunder. These mains applications are strictly regulated in safety standards and therefore electromagnetic interference suppression capacitors conforming the standards must be used.

To select the capacitor for a certain application, the following conditions must be checked:
1. The peak voltage \(U_p \) shall not be greater than the rated DC voltage \(U_{RDC} \)
2. The peak-to-peak voltage \(U_{p\text{-}p} \) shall not be greater than the maximum \(U_{p\text{-}p} \) to avoid the ionization inception level
3. The voltage peak slope \(\frac{dU}{dt} \) shall not exceed the rated voltage pulse slope in an RC-circuit at rated voltage and without ringing. If the pulse voltage is lower than the rated DC voltage, the rated voltage pulse slope may be multiplied by \(U_{RDC} \) and divided by the applied voltage.

For all other pulses following equation must be fulfilled:
\[
2 \int_{0}^{T} \left(\frac{dU}{dt} \right)^2 \, dt < U_{RDC} \times \left(\frac{dU}{dt} \right)_{\text{rated}}
\]
\(T \) is the pulse duration
4. The maximum component surface temperature rise must be lower than the limits (see graph “Max. allowed component temperature rise”).
5. Since in circuits used at voltages over 280 V peak-to-peak the risk for an intrinsically active flammability after a capacitor breakdown (short circuit) increases, it is recommended that the power to the component is limited to 100 times the values mentioned in the table: “Heat Conductivity”
6. When using these capacitors as across-the-line capacitor in the input filter for mains applications or as series connected with an impedance to the mains the applicant must guarantee that the following conditions are fulfilled in any case (spikes and surge voltages from the mains included).

EXAMPLE
\(C = 4n7 \) - 1600 V used for the voltage signal shown in next drawing.
\(U_{p\text{-}p} = 1000 \, V; U_p = 900 \, V; T_1 = 12 \, \mu s; T_2 = 64 \, \mu s; T_3 = 4 \, \mu s \)
The ambient temperature is 80 °C. In case of failure, the oscillation is blocked.

Checking the conditions:
1. The peak voltage \(U_p = 900 \, V \) is lower than 1600 VDC
2. The peak-to-peak voltage 1000 V is lower than \(2 \times 550 \times \frac{V_{AC}}{2} = 1600 \, U_{p\text{-}p} \)
3. The voltage pulse slope \(\frac{dU}{dt} \) = 1000 V/\(4 \, \mu s \) = 250 V/\(\mu s \)
 This is lower than 4000 V/\(\mu s \) (see specific reference data for each version)
4. The dissipated power is 35 mW as calculated with fourier terms and typical tgd.
 The temperature rise for Wmax. = 6 mm and pitch = 15 mm will be 35 mW/9 mW/°C = 3.9 °C
 This is lower than 10 °C temperature rise at 80 °C, according graph.
5. Oscillation is blocked
6. Not applicable

VOLTAGE SIGNAL

![Voltage Signal Diagram]

T1, T2, T3, Up, Up-p
INSPECTION REQUIREMENTS

General Notes

Sub-clause numbers of tests and performance requirements refer to the “Sectional Specification, Publication IEC 60384-17 and Specific Reference Data”.

GROUP C INSPECTION REQUIREMENTS

<table>
<thead>
<tr>
<th>SUB-CLAUSE NUMBER AND TEST</th>
<th>CONDITIONS</th>
<th>PERFORMANCE REQUIREMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUB-GROUP C1A PART OF SAMPLE OF SUB-GROUP C1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1 Dimensions (detail)</td>
<td></td>
<td>As specified in Chapters “General data” of this specification</td>
</tr>
</tbody>
</table>
| 4.3.1 Initial measurements | Capacitance
Tangent of loss angle:
C ≤ 1 μF at 100 kHz
1 μF < C ≤ 10 μF at 10 kHz
C > 10 μF at 1 kHz | |
| 4.3 Robustness of terminations | Tensile: load 10 N; 10 s
Bending: load 5 N; 4 x 90° | No visible damage |
| 4.4 Resistance to soldering heat | Method: 1 A
Solder bath: 280 °C ± 5 °C
Duration: 10 s | |
| 4.14 Component solvent resistance | Isopropylalcohol at room temperature
Method: 2
Immersion time: 5 min ± 0.5 min
Recovery time:
min. 1 h, max. 2 h | |
| 4.4.2 Final measurements | Visual examination | No visible damage
Legible marking |
| 4.6.1 Initial measurements | Capacitance
Tangent of loss angle:
C ≤ 1 μF at 100 kHz
1 μF < C ≤ 10 μF at 10 kHz
C > 10 μF at 1 kHz | Increase of tan δ:
≤ 0.0005 for: C ≤ 100 nF at 100 kHz
≤ 0.0010 for: 100 nF < C ≤ 470 nF at 100 kHz
≤ 0.0015 for: 470 nF < C ≤ 1 μF at 100 kHz
≤ 0.0015 for: 1 μF < C ≤ 10 μF at 10 kHz
≤ 0.0015 for: C > 10 μF at 1 kHz
Compared to values measured in 4.3.1 |
| 4.15 Solvent resistance of the marking | Isopropylalcohol at room temperature
Method: 1
Rubbing material: cotton wool
Immersion time: 5 min ± 0.5 min | No visible damage
Legible marking |
| 4.6 Rapid change of temperature | θ A = -55 °C
θ B = +110 °C
5 cycles
Duration t = 30 min | |
GROUP C INSPECTION REQUIREMENTS

<table>
<thead>
<tr>
<th>Sub-Clause Number and Test</th>
<th>Conditions</th>
<th>Performance Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUB-GROUP C1A PART OF SAMPLE OF SUB-GROUP C1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.7 Vibration</td>
<td>Visual examination Mounting: see section “Mounting” for more information Procedure B4 Frequency range: 10 Hz to 55 Hz. Amplitude: 0.75 mm or Acceleration 98 m/s² (whichever is less severe) Total duration 6 h.</td>
<td>No visible damage</td>
</tr>
<tr>
<td>4.7.2 Final inspection</td>
<td>Visual examination</td>
<td></td>
</tr>
<tr>
<td>4.9 Shock</td>
<td>Mounting: see section “Mounting” for more information</td>
<td></td>
</tr>
<tr>
<td>4.9.3 Final measurements</td>
<td>Visual examination</td>
<td>No visible damage</td>
</tr>
<tr>
<td></td>
<td>Capacitance</td>
<td>$\Delta C/C_i \leq 2%$ of the value measured in 4.6.1.</td>
</tr>
<tr>
<td></td>
<td>Tangent of loss angle</td>
<td>Increase of $\tan \delta$:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>≤ 0.0005 for: $C \leq 100\ nF$ at 100 kHz ≤ 0.0010 for: $100\ nF < C \leq 470\ nF$ at 100 kHz ≤ 0.0015 for: $470\ nF < C \leq 1\ \mu F$ at 100 kHz ≤ 0.0015 for: $1\ \mu F < C \leq 10\ \mu F$ at 10 kHz ≤ 0.0015 for: $C > 10\ \mu F$ at 1 kHz Compared to values measured in 4.6.1</td>
</tr>
<tr>
<td></td>
<td>Insulation resistance</td>
<td>As specified in section “Insulation Resistance” of this specification.</td>
</tr>
<tr>
<td>SUB-GROUP C1 COMBINED SAMPLE OF SPECIMENS OF SUB-GROUPS C1A AND C1B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.10 Climatic sequence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.10.2 Dry heat</td>
<td>Temperature +110 °C Duration: 16 h</td>
<td></td>
</tr>
<tr>
<td>4.10.3 Damp heat cyclic</td>
<td>Test Db, first cycle</td>
<td></td>
</tr>
<tr>
<td>4.10.4 Cold</td>
<td>Temperature: -55 °C Duration: 2 h</td>
<td></td>
</tr>
<tr>
<td>4.10.6 Damp heat cyclic</td>
<td>Test Db remaining cycles</td>
<td></td>
</tr>
<tr>
<td>4.10.6.2 Final measurements</td>
<td>Voltage proof = U_{RDC} for 1 min within 15 min after removal from test chamber</td>
<td>No breakdown or flashover</td>
</tr>
<tr>
<td></td>
<td>Visual examination</td>
<td>No visible damage</td>
</tr>
<tr>
<td></td>
<td>Capacitance</td>
<td>$\Delta C/C_i \leq 2%$ of the value measured in 4.4.2 or 4.9.3</td>
</tr>
<tr>
<td></td>
<td>Tangent of loss angle</td>
<td>Increase of $\tan \delta$:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>≤ 0.0005 for: $C \leq 100\ nF$ at 100 kHz ≤ 0.0010 for: $100\ nF < C \leq 470\ nF$ at 100 kHz ≤ 0.0015 for: $470\ nF < C \leq 1\ \mu F$ at 100 kHz ≤ 0.0015 for: $1\ \mu F < C \leq 10\ \mu F$ at 10 kHz ≤ 0.0015 for: $C > 10\ \mu F$ at 1 kHz Compared to values measured in 4.3.1 or 4.6.1</td>
</tr>
<tr>
<td></td>
<td>Insulation resistance</td>
<td>$\geq 50%$ of values specified in section “Insulation Resistance” of this specification.</td>
</tr>
</tbody>
</table>
GROUP C INSPECTION REQUIREMENTS

<table>
<thead>
<tr>
<th>SUB-CLAUSE NUMBER AND TEST</th>
<th>CONDITIONS</th>
<th>PERFORMANCE REQUIREMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUB-GROUP C2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.11 Damp heat steady state</td>
<td>56 days; 40 °C; 90 % to 95 % RH no load</td>
<td></td>
</tr>
<tr>
<td>4.11.1 Initial measurements</td>
<td>Capacitance Tangent of loss angle at 1 kHz</td>
<td></td>
</tr>
<tr>
<td>4.11.3 Final measurements</td>
<td>Voltage proof = U_{RDC} for 1 min within 15 min after removal from test chamber Visual examination Capacitance Tangent of loss angle</td>
<td>No breakdown or flashover</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUB-GROUP C3A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.12.1 Endurance</td>
<td>Duration: 2000 h Temperature: 85 °C Voltage: 1.25 x $U_{\text{RAC}} \times V_{\text{RMS}}$, 50 Hz or Duration: 2000 h Temperature: 110 °C Voltage: 0.875 x $U_{\text{RAC}} \times V_{\text{RMS}}$, 50 Hz</td>
<td></td>
</tr>
<tr>
<td>4.12.1.1 Initial measurements</td>
<td>Capacitance Tangent of loss angle $C \leq 1 \mu F$ at 100 kHz $1 \mu F < C \leq 10 \mu F$ at 10 kHz $C > 10 \mu F$ at 1 kHz</td>
<td></td>
</tr>
<tr>
<td>4.12.1.3 Final measurements</td>
<td>Visual examination Capacitance Tangent of loss angle Insulation resistance</td>
<td>No visible damage Legible marking</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Increase of tan δ: ≤ 0.0005 for: $C \leq 100 \text{ nF}$ at 100 kHz ≤ 0.0010 for: $100 \text{ nF} < C \leq 470 \text{ nF}$ at 100 kHz ≤ 0.0015 for: $470 \text{ nF} < C \leq 1 \mu F$ at 100 kHz ≤ 0.0015 for: $1 \mu F < C \leq 10 \mu F$ at 10 kHz ≤ 0.0015 for: $C > 10 \mu F$ at 1 kHz Compared to values measured in 4.12.1.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>≥ 50 % of values specified in section “Insulation resistance” of this specification</td>
</tr>
</tbody>
</table>

For technical questions, contact: dc-film@vishay.com

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE, THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
GROUP C INSPECTION REQUIREMENTS

<table>
<thead>
<tr>
<th>SUB-CLAUSE NUMBER AND TEST</th>
<th>CONDITIONS</th>
<th>PERFORMANCE REQUIREMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUB-GROUP C3B</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 4.12.2 Endurance test at 50 Hz alternating voltage | Duration: 500 h
Voltage: \(1.25 \times U_{\text{RDC}}\)
110 °C | |
| 4.12.2.1 Initial measurements | 0.625 \(\times U_{\text{RAC}}\) at 125 °C
Capacitance
Tangent of loss angle:
\(C \leq 1 \mu F\) at 100 kHz
\(1 \mu F < C \leq 10 \mu F\) at 10 kHz
\(C > 10 \mu F\) at 1 kHz | |
| 4.12.2.3 Final measurements | Visual examination | No visible damage
Legible marking
Capacitance
\(\Delta C/C_l \leq 10 \% + 100 \text{pF} \) compared to values measured in 4.12.2.1
Tangent of loss angle
Increase of \(\tan \delta\):
\(\leq 0.0005\) for: \(C \leq 100 \text{nF}\) at 100 kHz
\(\leq 0.0010\) for: \(100 \text{nF} < C \leq 470 \text{nF}\) at 100 kHz
\(\leq 0.0015\) for: \(470 \text{nF} < C \leq 1 \mu F\) at 100 kHz
\(\leq 0.0015\) for: \(1 \mu F < C \leq 10 \mu F\) at 10 kHz
\(\leq 0.0015\) for: \(C > 10 \mu F\) at 1 kHz
Compared to values measured in 4.12.2.1
Insulation resistance
\(\geq 50 \%\) of values specified in section “Insulation Resistance” of this specification. |
| **SUB-GROUP C4** | | |
| 4.2.6 Temperature characteristics | Capacitance
Capacitance at -55 °C
Capacitance at 20 °C
Capacitance at +125 °C | For -55 °C to +20 °C:
+1 % \(\leq \Delta C/C_l \leq 3.75 \%\) or
for 20 °C to 105 °C:
-7.5 % \(\leq \Delta C/C_l \leq 0 \%\) |
| Intermediate measurements | Final measurements | Capacitance
Insulation resistance | As specified in section “Capacitance” of this specification
As specified in section “Insulation Resistance” of this specification |
| 4.13 Charge and discharge | 10 000 cycles
Charged to \(U_{\text{RDC}}\) discharge resistance:
\(R = \frac{U_{\text{RDC}}}{2.5 \times C \times (dU/dt)}\) | Capacitance
\(\Delta C/C_l \leq 1 \%\) compared to values measured in 4.13.1.
Tangent of loss angle
Increase of \(\tan \delta\):
\(\leq 0.0005\) for: \(C \leq 100 \text{nF}\) or
\(\leq 0.001\) for: \(100 \text{nF} < C \leq 470 \text{nF}\) or
\(\leq 0.0015\) for: \(C > 470 \text{nF}\)
Compared to values measured in 4.13.1
Insulation resistance
\(\geq 50 \%\) of values specified in section “Insulation Resistance” of this specification. |
GROUP C INSPECTION REQUIREMENTS

<table>
<thead>
<tr>
<th>SUB-CLAUSE NUMBER AND TEST</th>
<th>CONDITIONS</th>
<th>PERFORMANCE REQUIREMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.1 Ignition of lamp test Only for 1600 V and 2000 V series (Cap. value < 33 nF)</td>
<td>Capacitance</td>
<td></td>
</tr>
<tr>
<td>A.1.1 Initial measurements</td>
<td>Tangent of loss angle at 100 kHz Temperature: 85 °C</td>
<td></td>
</tr>
<tr>
<td>A.1.2 Ignition of lamp test</td>
<td>10 000 cycles: 1 s ON 29 s OFF: Frequency: 60 kHz Voltage: 1600 V type: 2800 Vpp 2000 V type: 3000 Vpp</td>
<td></td>
</tr>
<tr>
<td>A.1.3 Final measurements</td>
<td>Visual examination</td>
<td>No visible damage</td>
</tr>
<tr>
<td>Capacitance</td>
<td>(\Delta C/C_l \leq 5%) of the value measured in A.1.1</td>
<td></td>
</tr>
<tr>
<td>Tangent of loss angle</td>
<td>Increase of (\tan \delta): (\leq 0.0005) for: (C \leq 100 \text{ nF}) at 100 kHz (\leq 0.0010) for: (100 \text{ nF} < C \leq 470 \text{ nF}) at 100 kHz (\leq 0.0015) for: (470 \text{ nF} < C \leq 1 \mu F) at 100 kHz (\leq 0.0015) for: (1 \mu F < C \leq 10 \mu F) at 10 kHz (\leq 0.0015) for: (C > 10 \mu F) at 1 kHz Compared to values measured in A.1.1</td>
<td></td>
</tr>
<tr>
<td>Insulation resistance</td>
<td>(\geq 50%) of values specified in section “Insulation Resistance” of this specification</td>
<td></td>
</tr>
</tbody>
</table>
Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertecchnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay’s knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer’s responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer’s technical experts. Product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.