Aluminum Electrolytic Capacitors
SMD (Chip), High Temperature

FEATURES
- Extended useful life: up to 6000 h at 125 °C for MAL214099...E3 parts
- Parts for advanced high temperature reflow soldering according to JEDEC® J-STD-020 available
- Vibration proof, 4-pin version and 6-pin version
- AEC-Q200 qualified
- Polarized aluminum electrolytic capacitors, non-solid electrolyte, self healing
- SMD-version with base plate, lead (Pb)-free reflow solderable
- Charge and discharge proof, no peak current limitation
- High reliability
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

APPLICATIONS
- SMD technology, for high temperature reflow soldering
- Industrial and professional applications
- Automotive, general industrial, telecom
- Smoothing, filtering, buffering

MARKING
- Rated capacitance (in µF)
- Rated voltage (in V)
- Date code, in accordance with IEC 60062
- Black mark or "-" sign indicating the cathode (the anode is identified by beveled edges)
- Code indicating group number (H)

PACKAGING
Supplied in blister tape on reel

QUICK REFERENCE DATA

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal case sizes (L x W x H in mm)</td>
<td>8 x 8 x 10 to 18 x 18 x 21</td>
</tr>
<tr>
<td>Rated capacitance range, C_R</td>
<td>10 µF to 4700 µF</td>
</tr>
<tr>
<td>Tolerance on C_R</td>
<td>± 20 %</td>
</tr>
<tr>
<td>Rated voltage range, U_R</td>
<td>6.3 V to 63 V</td>
</tr>
<tr>
<td>Category temperature range</td>
<td>-55 °C to +125 °C</td>
</tr>
<tr>
<td>Endurance test at 125 °C</td>
<td>1000 h to 5000 h</td>
</tr>
<tr>
<td>Useful life at 125 °C</td>
<td>1500 h to 6000 h</td>
</tr>
<tr>
<td>Useful life at 40 °C 1.8 x I_R applied</td>
<td>150 000 h to 500 000 h</td>
</tr>
<tr>
<td>Shelf life at 0 V, 125 °C</td>
<td>1000 h</td>
</tr>
<tr>
<td>Based on sectional specification</td>
<td>IEC 60384-18 / CECC 32300</td>
</tr>
<tr>
<td>Climatic category IEC 60068</td>
<td>55 / 125 / 56</td>
</tr>
</tbody>
</table>
SELECTION CHART FOR CR, UR, AND RELEVANT NOMINAL CASE SIZES (L x W x H in mm)

<table>
<thead>
<tr>
<th>CR (μF)</th>
<th>UR (V)</th>
<th>6.3</th>
<th>10</th>
<th>16</th>
<th>25</th>
<th>35</th>
<th>50</th>
<th>63</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>→</td>
<td>→</td>
<td>→</td>
<td>→</td>
<td>→</td>
<td>→</td>
<td>→</td>
<td>8 x 8 x 10</td>
</tr>
<tr>
<td>22</td>
<td>→</td>
<td>→</td>
<td>→</td>
<td>→</td>
<td>→</td>
<td>→</td>
<td>→</td>
<td>8 x 8 x 10</td>
</tr>
<tr>
<td>33</td>
<td>→</td>
<td>→</td>
<td>→</td>
<td>→</td>
<td>→</td>
<td>→</td>
<td>→</td>
<td>8 x 8 x 10</td>
</tr>
<tr>
<td>47</td>
<td>→</td>
<td>→</td>
<td>→</td>
<td>→</td>
<td>→</td>
<td>→</td>
<td>→</td>
<td>8 x 8 x 10</td>
</tr>
<tr>
<td>68</td>
<td>→</td>
<td>→</td>
<td>→</td>
<td>→</td>
<td>8 x 8 x 10</td>
<td>10 x 10 x 10</td>
<td>10 x 10 x 14</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>→</td>
<td>→</td>
<td>→</td>
<td>8 x 8 x 10</td>
<td>10 x 10 x 10</td>
<td>10 x 10 x 14</td>
<td>12.5 x 12.5 x 13</td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>→</td>
<td>→</td>
<td>8 x 8 x 10</td>
<td>10 x 10 x 14</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>220</td>
<td>→</td>
<td>8 x 8 x 10</td>
<td>10 x 10 x 10</td>
<td>12.5 x 12.5 x 13</td>
<td>12.5 x 12.5 x 13</td>
<td>12.5 x 12.5 x 16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>330</td>
<td>8 x 8 x 10</td>
<td>10 x 10 x 10</td>
<td>10 x 10 x 14</td>
<td>12.5 x 12.5 x 13</td>
<td>12.5 x 12.5 x 13</td>
<td>12.5 x 12.5 x 16</td>
<td>16 x 16 x 16</td>
<td></td>
</tr>
<tr>
<td>470</td>
<td>10 x 10 x 10</td>
<td>10 x 10 x 14</td>
<td>12.5 x 12.5 x 13</td>
<td>12.5 x 12.5 x 16</td>
<td>16 x 16 x 16</td>
<td>18 x 18 x 16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>680</td>
<td>10 x 10 x 14</td>
<td>12.5 x 12.5 x 13</td>
<td>12.5 x 12.5 x 16</td>
<td>→</td>
<td>16 x 16 x 16</td>
<td>18 x 18 x 16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>820</td>
<td>→</td>
<td>→</td>
<td>→</td>
<td>→</td>
<td>16 x 16 x 21</td>
<td>18 x 18 x 21</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>→</td>
<td>12.5 x 12.5 x 16</td>
<td>→</td>
<td>16 x 16 x 21</td>
<td>18 x 18 x 16</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1200</td>
<td>→</td>
<td>→</td>
<td>→</td>
<td>→</td>
<td>18 x 18 x 21</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>1500</td>
<td>→</td>
<td>→</td>
<td>→</td>
<td>→</td>
<td>18 x 18 x 21</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>2200</td>
<td>→</td>
<td>16 x 16 x 16</td>
<td>16 x 16 x 16</td>
<td>→</td>
<td>18 x 18 x 21</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3300</td>
<td>→</td>
<td>16 x 16 x 16</td>
<td>→</td>
<td>18 x 18 x 21</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4700</td>
<td>→</td>
<td>18 x 18 x 21</td>
<td>→</td>
<td>→</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Dimensions

2-pin: ≤ Ø 10 mm

4-pin: Ø 12.5 mm

6-pin: ≥ Ø 16 mm

![Fig. 2 - Dimensional outline](image-url)
Table 1

<table>
<thead>
<tr>
<th>NOMINAL CASE SIZE L x W x H</th>
<th>CASE CODE</th>
<th>L_MAX.</th>
<th>W_MAX.</th>
<th>H_MAX.</th>
<th>Ø D</th>
<th>B_MAX.</th>
<th>S</th>
<th>L1_MAX.</th>
<th>MASS (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 x 8 x 10</td>
<td>0810</td>
<td>8.5</td>
<td>8.5</td>
<td>10.5</td>
<td>8.0</td>
<td>1.0</td>
<td>2.2</td>
<td>10.2</td>
<td>≈ 1.0</td>
</tr>
<tr>
<td>10 x 10 x 10</td>
<td>1010</td>
<td>10.5</td>
<td>10.5</td>
<td>10.5</td>
<td>10.0</td>
<td>1.0</td>
<td>3.5</td>
<td>12.1</td>
<td>≈ 1.3</td>
</tr>
<tr>
<td>10 x 10 x 14</td>
<td>1014</td>
<td>10.5</td>
<td>10.5</td>
<td>14.3</td>
<td>10.0</td>
<td>1.0</td>
<td>3.5</td>
<td>12.1</td>
<td>≈ 1.5</td>
</tr>
<tr>
<td>12.5 x 12.5 x 13</td>
<td>1213</td>
<td>12.9</td>
<td>12.9</td>
<td>14.0</td>
<td>12.5</td>
<td>1.3</td>
<td>3.6</td>
<td>14.9</td>
<td>≈ 2.6</td>
</tr>
<tr>
<td>12.5 x 12.5 x 16</td>
<td>1216</td>
<td>12.9</td>
<td>12.9</td>
<td>16.5</td>
<td>12.5</td>
<td>1.3</td>
<td>3.6</td>
<td>14.9</td>
<td>≈ 2.8</td>
</tr>
<tr>
<td>16 x 16 x 16</td>
<td>1616</td>
<td>16.6</td>
<td>16.6</td>
<td>17.5</td>
<td>16.0</td>
<td>1.3</td>
<td>6.5</td>
<td>18.6</td>
<td>≈ 5.5</td>
</tr>
<tr>
<td>16 x 16 x 21</td>
<td>1621</td>
<td>16.6</td>
<td>16.6</td>
<td>22.0</td>
<td>16.0</td>
<td>1.3</td>
<td>6.5</td>
<td>18.6</td>
<td>≈ 6.0</td>
</tr>
<tr>
<td>18 x 18 x 16</td>
<td>1816</td>
<td>19.0</td>
<td>19.0</td>
<td>17.5</td>
<td>18.0</td>
<td>1.3</td>
<td>6.5</td>
<td>21.0</td>
<td>≈ 8.0</td>
</tr>
<tr>
<td>18 x 18 x 21</td>
<td>1821</td>
<td>19.0</td>
<td>19.0</td>
<td>22.0</td>
<td>18.0</td>
<td>1.3</td>
<td>6.5</td>
<td>21.0</td>
<td>≈ 8.3</td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th>NOMINAL CASE SIZE L x W x H</th>
<th>CASE CODE</th>
<th>PITCH P1</th>
<th>TAPE WIDTH W</th>
<th>TAPE THICKNESS T2</th>
<th>REEL DIAMETER</th>
<th>PACKAGING QUANTITY PER REEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 x 8 x 10</td>
<td>0810</td>
<td>16</td>
<td>24</td>
<td>11.6</td>
<td>380</td>
<td>500</td>
</tr>
<tr>
<td>10 x 10 x 10</td>
<td>1010</td>
<td>16</td>
<td>24</td>
<td>11.6</td>
<td>380</td>
<td>500</td>
</tr>
<tr>
<td>10 x 10 x 14</td>
<td>1014</td>
<td>16</td>
<td>24</td>
<td>15.4</td>
<td>330</td>
<td>250</td>
</tr>
<tr>
<td>12.5 x 12.5 x 13</td>
<td>1213</td>
<td>20</td>
<td>24</td>
<td>16.2</td>
<td>380</td>
<td>250</td>
</tr>
<tr>
<td>12.5 x 12.5 x 16</td>
<td>1216</td>
<td>24</td>
<td>32</td>
<td>18.5</td>
<td>380</td>
<td>200</td>
</tr>
<tr>
<td>16 x 16 x 16</td>
<td>1616</td>
<td>28</td>
<td>44</td>
<td>18.9</td>
<td>380</td>
<td>150</td>
</tr>
<tr>
<td>16 x 16 x 21</td>
<td>1621</td>
<td>28</td>
<td>44</td>
<td>23.4</td>
<td>380</td>
<td>100</td>
</tr>
<tr>
<td>18 x 18 x 16</td>
<td>1816</td>
<td>32</td>
<td>44</td>
<td>18.9</td>
<td>380</td>
<td>125</td>
</tr>
<tr>
<td>18 x 18 x 21</td>
<td>1821</td>
<td>32</td>
<td>44</td>
<td>23.4</td>
<td>380</td>
<td>100</td>
</tr>
</tbody>
</table>

Note
- For detailed tape dimensions please refer to packaging information: www.vishay.com/doc?28359
MOUNTING
The capacitors are designed for automatic placement on to printed-circuit boards.
Optimum dimensions of soldering pads depend amongst others on soldering method, mounting accuracy, print layout and / or adjacent components.
For recommended soldering pad dimensions, refer to Fig. 3 and Table 3.

SOLDERING
Soldering conditions are defined by the curve, temperature versus time, where the temperature is that measured on the component during processing.
For maximum conditions refer to Fig. 4 or Fig. 5.
Any temperature versus time curve which does not exceed the specified maximum curves may be applied.
As a general principle, temperature and duration shall be the minimum necessary required to ensure good soldering connections. However, the specified maximum curves should never be exceeded.

Table 3

<table>
<thead>
<tr>
<th>CASE CODE</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>0810</td>
<td>4.4</td>
<td>2.5</td>
<td>3.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1010</td>
<td>4.4</td>
<td>2.5</td>
<td>4.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1014</td>
<td>4.4</td>
<td>2.5</td>
<td>4.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1213</td>
<td>6.3</td>
<td>2.5</td>
<td>4.0</td>
<td>4.2</td>
<td>5.0</td>
<td>5.6</td>
</tr>
<tr>
<td>1216</td>
<td>6.3</td>
<td>2.5</td>
<td>4.0</td>
<td>4.2</td>
<td>5.0</td>
<td>5.6</td>
</tr>
<tr>
<td>1616</td>
<td>7.8</td>
<td>9.6</td>
<td>4.7</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1621</td>
<td>7.8</td>
<td>9.6</td>
<td>4.7</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1816</td>
<td>8.8</td>
<td>9.6</td>
<td>4.7</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1821</td>
<td>8.8</td>
<td>9.6</td>
<td>4.7</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Fig. 3 - Recommended soldering pad dimensions
STANDARD SOLDERING PROFILE FOR LEAD (Pb)-FREE REFLOW PROCESS

![Graph showing temperature profile during reflow soldering](https://example.com/temperature_profile.png)

Fig. 4 - Maximum temperature load during reflow soldering

Table 4

REFLOW SOLDERING CONDITIONS for MAL214097xxxE3

<table>
<thead>
<tr>
<th>PROFILE FEATURES</th>
<th>CASE CODE 0810 TO 1014</th>
<th>CASE CODE 1213 TO 1216</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. time from 25 °C to T\text{Peak}</td>
<td>240 s</td>
<td>200 s</td>
</tr>
<tr>
<td>Max. ramp-up rate to 150 °C</td>
<td>3 K/s</td>
<td>3 K/s</td>
</tr>
<tr>
<td>Max. time from 150 °C to 200 °C (t\text{1})</td>
<td>150 s</td>
<td>120 s</td>
</tr>
<tr>
<td>Ramp up rate from 200 °C to T\text{Peak}</td>
<td>0.5 K/s to 3 K/s</td>
<td>0.5 K/s to 3 K/s</td>
</tr>
<tr>
<td>Max. time from 200 °C to 217 °C (t\text{2})</td>
<td>60 s</td>
<td>60 s</td>
</tr>
<tr>
<td>Max. time above T\text{Liquidus} (217 °C) (t\text{3})</td>
<td>90 s</td>
<td>60 s</td>
</tr>
<tr>
<td>Max. time above 230 °C (t\text{4})</td>
<td>40 s</td>
<td>30 s</td>
</tr>
<tr>
<td>Peak temperature T\text{Peak}</td>
<td>250 °C</td>
<td>240 °C</td>
</tr>
<tr>
<td>Max. time above T\text{Peak} minus 5 °C</td>
<td>5 s</td>
<td>10 s</td>
</tr>
<tr>
<td>Max. ramp-down rate from T\text{Liquidus}</td>
<td>3 K/s to 6 K/s</td>
<td>3 K/s to 6 K/s</td>
</tr>
</tbody>
</table>

Notes
- Temperature measuring point on top of the case and on terminals
- Max. 2 runs with pause of min. 30 min in between
ADVANCED SOLDERING PROFILE FOR LEAD (Pb)-FREE REFLOW PROCESS
ACCORDING TO JEDEC J-STD-020

Fig. 5 - Maximum temperature load during reflow soldering

Table 5

<table>
<thead>
<tr>
<th>REFLOW SOLDERING CONDITIONS for MAL214099xxxE3</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROFILE FEATURES</td>
</tr>
<tr>
<td>Max. time from 25 °C to T_{Peak}</td>
</tr>
<tr>
<td>Max. ramp-up rate to 150 °C</td>
</tr>
<tr>
<td>Max. time from 150 °C to 200 °C (t_{1})</td>
</tr>
<tr>
<td>Max. time from 190 °C to 200 °C (t_{2})</td>
</tr>
<tr>
<td>Ramp up rate from 200 °C to T_{Peak}</td>
</tr>
<tr>
<td>Max. time above T_{Liquidus} (217 °C) (t_{3})</td>
</tr>
<tr>
<td>Max. time above 230 °C (t_{4})</td>
</tr>
<tr>
<td>Peak temperature T_{Peak}</td>
</tr>
<tr>
<td>Max. time above T_{Peak} minus 5 °C</td>
</tr>
<tr>
<td>Ramp-down rate from T_{Liquidus}</td>
</tr>
</tbody>
</table>

Notes
- Temperature measuring point on top of the case and on terminals
- Max. 2 runs with pause of min. 30 min in between
Note
• Unless otherwise specified, all electrical values in Table 6 apply at $T_{amb} = 20\, ^\circ\mathrm{C}$, $P = 86\, \text{kPa}$ to $106\, \text{kPa}$, $\text{RH} = 45\%$ to 75%

ORDERING EXAMPLE
Electrolytic capacitor 140 CRH series
220 μF / 50 V; $\pm\, 20\%$
Nominal case size: 12.5 mm x 12.5 mm x 13 mm; taped on reel
Ordering code: MAL214099111E3

<table>
<thead>
<tr>
<th>U_R (V)</th>
<th>C_R (μF)</th>
<th>NOMINAL CASE SIZE L x W x H (mm)</th>
<th>I_R 100 kHz 125 °C (mA)</th>
<th>I_{L2} 2 min (mA)</th>
<th>$\tan \delta$ 100 Hz</th>
<th>Z 100 kHz 20 °C (Ω)</th>
<th>LIFE CODE (2)</th>
<th>ORDERING CODE (1) MAL2140...</th>
<th>ORDERING CODE (2) MAL2140...</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.3</td>
<td>330</td>
<td>8 x 8 x 10</td>
<td>180</td>
<td>21</td>
<td>0.30</td>
<td>0.40</td>
<td>L1</td>
<td>97303E3 -</td>
<td>-</td>
</tr>
<tr>
<td>470</td>
<td>10 x 10 x 10</td>
<td>300</td>
<td>30</td>
<td>0.30</td>
<td>0.25</td>
<td>L1</td>
<td>97301E3 -</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>680</td>
<td>10 x 10 x 14</td>
<td>430</td>
<td>43</td>
<td>0.30</td>
<td>0.20</td>
<td>L1</td>
<td>97302E3 -</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>220</td>
<td>10 x 10 x 10</td>
<td>180</td>
<td>22</td>
<td>0.26</td>
<td>0.40</td>
<td>L1</td>
<td>97403E3 -</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>330</td>
<td>10 x 10 x 10</td>
<td>300</td>
<td>33</td>
<td>0.26</td>
<td>0.25</td>
<td>L1</td>
<td>97401E3 -</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>330</td>
<td>10 x 10 x 10</td>
<td>300</td>
<td>33</td>
<td>0.26</td>
<td>0.25</td>
<td>L1</td>
<td>97401E3 -</td>
<td>99401E3</td>
<td></td>
</tr>
<tr>
<td>470</td>
<td>10 x 10 x 14</td>
<td>430</td>
<td>47</td>
<td>0.26</td>
<td>0.20</td>
<td>L1</td>
<td>97402E3 -</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>680</td>
<td>12.5 x 12.5 x 13</td>
<td>750</td>
<td>68</td>
<td>0.22</td>
<td>0.12</td>
<td>L2</td>
<td>97411E3 -</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>12.5 x 12.5 x 16</td>
<td>900</td>
<td>100</td>
<td>0.22</td>
<td>0.09</td>
<td>L2</td>
<td>97412E3 -</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>12.5 x 12.5 x 16</td>
<td>900</td>
<td>100</td>
<td>0.22</td>
<td>0.09</td>
<td>L4 - 99412E3 -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2200</td>
<td>16 x 16 x 16</td>
<td>1000</td>
<td>220</td>
<td>0.24</td>
<td>0.08</td>
<td>L5 - 99413E3 -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3300</td>
<td>16 x 16 x 21</td>
<td>1200</td>
<td>330</td>
<td>0.24</td>
<td>0.06</td>
<td>L5 - 99414E3 -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3300</td>
<td>18 x 18 x 16</td>
<td>1200</td>
<td>330</td>
<td>0.26</td>
<td>0.08</td>
<td>L5 - 99415E3 -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4700</td>
<td>18 x 18 x 21</td>
<td>1550</td>
<td>470</td>
<td>0.28</td>
<td>0.06</td>
<td>L5 - 99416E3 -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>330</td>
<td>10 x 10 x 14</td>
<td>430</td>
<td>53</td>
<td>0.22</td>
<td>0.20</td>
<td>L1</td>
<td>97502E3 -</td>
<td>-</td>
</tr>
<tr>
<td>330</td>
<td>12.5 x 12.5 x 13</td>
<td>750</td>
<td>75</td>
<td>0.18</td>
<td>0.12</td>
<td>L2</td>
<td>97511E3 -</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>470</td>
<td>12.5 x 12.5 x 13</td>
<td>750</td>
<td>75</td>
<td>0.18</td>
<td>0.12</td>
<td>L3</td>
<td>99511E3 -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>680</td>
<td>12.5 x 12.5 x 16</td>
<td>900</td>
<td>108</td>
<td>0.18</td>
<td>0.09</td>
<td>L4 - 99512E3 -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>680</td>
<td>12.5 x 12.5 x 16</td>
<td>900</td>
<td>108</td>
<td>0.18</td>
<td>0.09</td>
<td>L4 - 99512E3 -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>16 x 16 x 16</td>
<td>1100</td>
<td>160</td>
<td>0.18</td>
<td>0.08</td>
<td>L5 - 99513E3 -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>16 x 16 x 21</td>
<td>1200</td>
<td>160</td>
<td>0.18</td>
<td>0.06</td>
<td>L5 - 99514E3 -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1500</td>
<td>16 x 16 x 21</td>
<td>1200</td>
<td>240</td>
<td>0.18</td>
<td>0.08</td>
<td>L5 - 99515E3 -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1500</td>
<td>18 x 18 x 16</td>
<td>1200</td>
<td>240</td>
<td>0.18</td>
<td>0.08</td>
<td>L5 - 99516E3 -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2200</td>
<td>16 x 16 x 21</td>
<td>1200</td>
<td>352</td>
<td>0.20</td>
<td>0.06</td>
<td>L5 - 99517E3 -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2200</td>
<td>18 x 18 x 21</td>
<td>1550</td>
<td>352</td>
<td>0.20</td>
<td>0.06</td>
<td>L5 - 99518E3 -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3300</td>
<td>18 x 18 x 21</td>
<td>1550</td>
<td>528</td>
<td>0.22</td>
<td>0.06</td>
<td>L5 - 99519E3 -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>1000</td>
<td>16 x 16 x 16</td>
<td>1100</td>
<td>25</td>
<td>0.18</td>
<td>0.40</td>
<td>L1</td>
<td>97602E3 -</td>
<td>-</td>
</tr>
<tr>
<td>220</td>
<td>10 x 10 x 10</td>
<td>300</td>
<td>55</td>
<td>0.20</td>
<td>0.25</td>
<td>L1</td>
<td>97601E3 -</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>220</td>
<td>10 x 10 x 10</td>
<td>300</td>
<td>55</td>
<td>0.20</td>
<td>0.25</td>
<td>L1</td>
<td>97601E3 -</td>
<td>99601E3</td>
<td></td>
</tr>
<tr>
<td>330</td>
<td>12.5 x 12.5 x 13</td>
<td>750</td>
<td>82</td>
<td>0.16</td>
<td>0.12</td>
<td>L2</td>
<td>97611E3 -</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>330</td>
<td>12.5 x 12.5 x 13</td>
<td>750</td>
<td>82</td>
<td>0.16</td>
<td>0.12</td>
<td>L2</td>
<td>97611E3 -</td>
<td>99611E3</td>
<td></td>
</tr>
<tr>
<td>470</td>
<td>12.5 x 12.5 x 16</td>
<td>900</td>
<td>117</td>
<td>0.16</td>
<td>0.09</td>
<td>L4 - 99612E3 -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>470</td>
<td>12.5 x 12.5 x 16</td>
<td>900</td>
<td>117</td>
<td>0.16</td>
<td>0.09</td>
<td>L4 - 99612E3 -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>16 x 16 x 16</td>
<td>1100</td>
<td>250</td>
<td>0.16</td>
<td>0.08</td>
<td>L5 - 99613E3 -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>16 x 16 x 21</td>
<td>1200</td>
<td>250</td>
<td>0.16</td>
<td>0.06</td>
<td>L5 - 99614E3 -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1500</td>
<td>16 x 16 x 21</td>
<td>1200</td>
<td>375</td>
<td>0.16</td>
<td>0.06</td>
<td>L5 - 99615E3 -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1500</td>
<td>18 x 18 x 16</td>
<td>1200</td>
<td>375</td>
<td>0.16</td>
<td>0.08</td>
<td>L5 - 99616E3 -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2200</td>
<td>18 x 18 x 21</td>
<td>1550</td>
<td>550</td>
<td>0.18</td>
<td>0.08</td>
<td>L5 - 99617E3 -</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes
(1) Standard reflow soldering profile, see Fig. 4 and Table 4
(2) Advanced reflow soldering profile, according to JEDEC J-STD-020, see Fig. 5 and Table 5
(3) Determines the applicable row in the table “Endurance Test Duration and Useful Life”
<table>
<thead>
<tr>
<th>Un (V)</th>
<th>Cr (μF)</th>
<th>Nominal Case Size L x W x H (mm)</th>
<th>Ir 100 kHz 125 °C (mA)</th>
<th>Il2 2 min (μA)</th>
<th>tan δ 100 kHz 20 °C (°)</th>
<th>Z 100 kHz 20 °C (Ω)</th>
<th>Life Code (3)</th>
<th>Ordering Code (1)</th>
<th>Ordering Code (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>68</td>
<td>8 x 8 x 10</td>
<td>180 24 0.14 0.40 L1</td>
<td>97003E3</td>
<td>99001E3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>10 x 10 x 10</td>
<td>255 35 0.14 0.25 L1</td>
<td>97001E3</td>
<td>99001E3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>10 x 10 x 14</td>
<td>317 53 0.14 0.20 L1</td>
<td>97002E3</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>220</td>
<td>12.5 x 12.5 x 13</td>
<td>750 77 0.14 0.12 L2</td>
<td>97011E3</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>330</td>
<td>12.5 x 12.5 x 13</td>
<td>750 115 0.14 0.12 L2</td>
<td>97012E3</td>
<td>99001E3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>10 x 10 x 10</td>
<td>255 35 0.14 0.25 L1</td>
<td>97001E3</td>
<td>99001E3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>10 x 10 x 14</td>
<td>317 53 0.14 0.20 L1</td>
<td>97002E3</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>220</td>
<td>12.5 x 12.5 x 13</td>
<td>750 77 0.14 0.12 L2</td>
<td>97011E3</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>330</td>
<td>12.5 x 12.5 x 13</td>
<td>750 115 0.14 0.12 L2</td>
<td>97012E3</td>
<td>99001E3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>470</td>
<td>12.5 x 12.5 x 16</td>
<td>900 164 0.14 0.09 L2</td>
<td>97013E3</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>680</td>
<td>16 x 16 x 16</td>
<td>1100 238 0.14 0.08 L5</td>
<td>99014E3</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>820</td>
<td>16 x 16 x 21</td>
<td>1200 287 0.14 0.06 L5</td>
<td>99015E3</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>18 x 18 x 16</td>
<td>1200 350 0.14 0.08 L5</td>
<td>99016E3</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1200</td>
<td>18 x 18 x 21</td>
<td>1550 420 0.14 0.06 L5</td>
<td>99017E3</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1500</td>
<td>18 x 18 x 21</td>
<td>1550 525 0.14 0.06 L5</td>
<td>99018E3</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>8 x 8 x 10</td>
<td>145 24 0.14 0.70 L2</td>
<td>97103E3</td>
<td>99018E3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>10 x 10 x 10</td>
<td>205 34 0.14 0.50 L2</td>
<td>97014E3</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>10 x 10 x 10</td>
<td>205 34 0.14 0.50 L2</td>
<td>97014E3</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>10 x 10 x 14</td>
<td>255 50 0.14 0.40 L4</td>
<td>99014E3</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>220</td>
<td>12.5 x 12.5 x 13</td>
<td>750 110 0.12 0.23 L2</td>
<td>97011E3</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>330</td>
<td>12.5 x 12.5 x 16</td>
<td>900 165 0.12 0.18 L4</td>
<td>99011E3</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>330</td>
<td>12.5 x 12.5 x 16</td>
<td>900 165 0.12 0.18 L4</td>
<td>99011E3</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>470</td>
<td>16 x 16 x 16</td>
<td>900 235 0.12 0.15 L5</td>
<td>99013E3</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>680</td>
<td>16 x 16 x 21</td>
<td>1000 340 0.12 0.13 L5</td>
<td>99014E3</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>820</td>
<td>18 x 18 x 16</td>
<td>1000 340 0.12 0.15 L5</td>
<td>99015E3</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>820</td>
<td>18 x 18 x 21</td>
<td>1050 410 0.12 0.13 L5</td>
<td>99017E3</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>18 x 18 x 21</td>
<td>1050 500 0.12 0.13 L5</td>
<td>99018E3</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>8 x 8 x 10</td>
<td>145 6.3 0.12 0.70 L1</td>
<td>97005E3</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>8 x 8 x 10</td>
<td>145 14 0.12 0.70 L1</td>
<td>97003E3</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>8 x 8 x 10</td>
<td>145 21 0.12 0.70 L1</td>
<td>97004E3</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>10 x 10 x 10</td>
<td>205 30 0.12 0.50 L1</td>
<td>97001E3</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>10 x 10 x 10</td>
<td>205 30 0.12 0.50 L1</td>
<td>97001E3</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>10 x 10 x 14</td>
<td>255 43 0.12 0.40 L1</td>
<td>97002E3</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>12.5 x 12.5 x 13</td>
<td>500 63 0.10 0.25 L2</td>
<td>97011E3</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>12.5 x 12.5 x 13</td>
<td>500 63 0.10 0.25 L2</td>
<td>97011E3</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>220</td>
<td>12.5 x 12.5 x 16</td>
<td>600 138 0.10 0.20 L2</td>
<td>97012E3</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>220</td>
<td>12.5 x 12.5 x 16</td>
<td>600 138 0.10 0.20 L2</td>
<td>97012E3</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>330</td>
<td>16 x 16 x 16</td>
<td>700 208 0.10 0.18 L2</td>
<td>97013E3</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>330</td>
<td>16 x 16 x 21</td>
<td>750 208 0.10 0.15 L5</td>
<td>99018E3</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>330</td>
<td>16 x 16 x 21</td>
<td>750 208 0.10 0.15 L5</td>
<td>99018E3</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>470</td>
<td>16 x 16 x 16</td>
<td>750 296 0.10 0.15 L5</td>
<td>99018E3</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>470</td>
<td>18 x 18 x 16</td>
<td>750 296 0.10 0.15 L5</td>
<td>99018E3</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>470</td>
<td>18 x 18 x 16</td>
<td>750 296 0.10 0.15 L5</td>
<td>99018E3</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>680</td>
<td>18 x 18 x 21</td>
<td>900 296 0.10 0.15 L5</td>
<td>99018E3</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes
(1) Standard reflow soldering profile, see Fig. 4 and Table 4
(2) Advanced reflow soldering profile, according to JEDEC J-STD-020, see Fig. 5 and Table 5
(3) Determines the applicable row in the table “Endurance Test Duration and Useful Life”
Table 7

<table>
<thead>
<tr>
<th>ADDITIONAL ELECTRICAL DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>PARAMETER</td>
</tr>
<tr>
<td>Voltage</td>
</tr>
<tr>
<td>Surge voltage for short periods</td>
</tr>
<tr>
<td>Reverse voltage for short periods</td>
</tr>
<tr>
<td>Current</td>
</tr>
<tr>
<td>Leakage current</td>
</tr>
<tr>
<td>Inductance</td>
</tr>
<tr>
<td>Equivalent series inductance (ESL)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Resistance</td>
</tr>
<tr>
<td>Equivalent series resistance (ESR) at 100 Hz</td>
</tr>
</tbody>
</table>

CAPACITANCE (C)

![Capacitance Graph](image1)

$C_T = \text{Capacitance at } 20 \degree \text{C}, 100 \text{ Hz}$

- Curve 1: 10 V
- Curve 2: 63 V

Fig. 6 - Typical multiplier of capacitance as a function of ambient temperature

DISSIPATION FACTOR ($\tan \delta$)

![Dissipation Factor Graph](image2)

$\tan \delta_0 = \text{Typical } \tan \delta \text{ at } 20 \degree \text{C}, 100 \text{ Hz}$

Fig. 7 - Typical multiplier of dissipation factor ($\tan \delta$) as a function of ambient temperature
EQUIVALENT SERIES RESISTANCE (ESR)

![Graph showing Equivalent Series Resistance (ESR)](image)

Fig. 8 - Typical multiplier of ESR as a function of frequency

IMPEDANCE (Z)

![Graph showing Impedance (Z)](image)

Fig. 9 - Typical impedance as a function of frequency

Fig. 10 - Typical impedance as a function of frequency

RIPPLE CURRENT AND USEFUL LIFE

Table 8

<table>
<thead>
<tr>
<th>LIFE CODE</th>
<th>ENDURANCE AT 125 °C (h)</th>
<th>USEFUL LIFE AT 125 °C (h)</th>
<th>USEFUL LIFE AT 40 °C 1.8 x I<sub>R</sub> APPLIED (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>1000</td>
<td>1500</td>
<td>150 000</td>
</tr>
<tr>
<td>L2</td>
<td>2000</td>
<td>3000</td>
<td>300 000</td>
</tr>
<tr>
<td>L3</td>
<td>3000</td>
<td>3500</td>
<td>350 000</td>
</tr>
<tr>
<td>L4</td>
<td>4000</td>
<td>5000</td>
<td>400 000</td>
</tr>
<tr>
<td>L5</td>
<td>5000</td>
<td>6000</td>
<td>500 000</td>
</tr>
</tbody>
</table>

Note
- Multiplier of useful life code: MBC242
Fig. 11 - Multiplier of useful life as a function of ambient temperature and ripple current load

Table 9

<table>
<thead>
<tr>
<th>U_R (V)</th>
<th>50</th>
<th>100</th>
<th>300</th>
<th>1000</th>
<th>3000</th>
<th>10000</th>
<th>30000</th>
<th>100000</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_R MULTIPLIER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.3</td>
<td>0.60</td>
<td>0.70</td>
<td>0.80</td>
<td>0.85</td>
<td>0.90</td>
<td>0.95</td>
<td>0.97</td>
<td>1.00</td>
</tr>
<tr>
<td>10</td>
<td>0.60</td>
<td>0.70</td>
<td>0.80</td>
<td>0.85</td>
<td>0.90</td>
<td>0.95</td>
<td>0.97</td>
<td>1.00</td>
</tr>
<tr>
<td>16</td>
<td>0.60</td>
<td>0.70</td>
<td>0.80</td>
<td>0.85</td>
<td>0.90</td>
<td>0.95</td>
<td>0.97</td>
<td>1.00</td>
</tr>
<tr>
<td>25</td>
<td>0.60</td>
<td>0.70</td>
<td>0.80</td>
<td>0.85</td>
<td>0.90</td>
<td>0.95</td>
<td>0.97</td>
<td>1.00</td>
</tr>
<tr>
<td>35</td>
<td>0.45</td>
<td>0.60</td>
<td>0.75</td>
<td>0.85</td>
<td>0.90</td>
<td>0.95</td>
<td>0.97</td>
<td>1.00</td>
</tr>
<tr>
<td>50</td>
<td>0.45</td>
<td>0.60</td>
<td>0.75</td>
<td>0.85</td>
<td>0.90</td>
<td>0.95</td>
<td>0.97</td>
<td>1.00</td>
</tr>
<tr>
<td>63</td>
<td>0.40</td>
<td>0.55</td>
<td>0.70</td>
<td>0.85</td>
<td>0.90</td>
<td>0.95</td>
<td>0.97</td>
<td>1.00</td>
</tr>
</tbody>
</table>

I_A = Actual ripple current at 100 kHz
I_R = Rated ripple current at 100 kHz, 125 °C
(1) Useful life at 125 °C and I_R applied; see Table 8
TEST PROCEDURES AND REQUIREMENTS

<table>
<thead>
<tr>
<th>TEST</th>
<th>PROCEDURE (quick reference)</th>
<th>REQUIREMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mounting</td>
<td>Shall be performed prior to tests mentioned below; reflow soldering; for maximum temperature load refer to chapter “Mounting”</td>
<td>$\Delta C/C: \pm 5%$ tan $\delta \leq \text{spec. limit}$ $I_{L2} \leq \text{spec. limit}$</td>
</tr>
<tr>
<td>Endurance</td>
<td>$T_{\text{amb}} = 125^\circ\text{C}; U_R$ applied; for test duration see Table 8</td>
<td>$U_R = 6.3, \text{V}; \Delta C/C: \pm 25%$ $U_R \geq 10, \text{V}; \Delta C/C: \pm 20%$ tan $\delta \leq 2 \times \text{spec. limit}$ $I_{L2} \leq \text{spec. limit}$</td>
</tr>
<tr>
<td>Useful life</td>
<td>$T_{\text{amb}} = 125^\circ\text{C}; U_R$ and I_R applied; for test duration see Table 8</td>
<td>$\Delta C/C: \pm 30%$ tan $\delta \leq 3 \times \text{spec. limit}$ $I_{L2} \leq \text{spec. limit}$ no short or open circuit total failure percentage: $\leq 1%$</td>
</tr>
<tr>
<td>Shelf life (storage at high temperature)</td>
<td>$T_{\text{amb}} = 125^\circ\text{C};$ no voltage applied; 1000 h after test: U_R to be applied for 30 min, 24 h to 48 h before measurement</td>
<td>For requirements see “Endurance test” above</td>
</tr>
<tr>
<td>Reverse voltage</td>
<td>$T_{\text{amb}} = 125^\circ\text{C};$ 125 h at $U = -0.5, \text{V}$, followed by 125 h at U_R</td>
<td>$\Delta C/C: \pm 15%$ tan $\delta \leq 1.5 \times \text{spec. limit}$ $I_{L2} \leq \text{spec. limit}$</td>
</tr>
</tbody>
</table>

Statements about product lifetime are based on calculations and internal testing. They should only be interpreted as estimations. Also due to external factors, the lifetime in the field application may deviate from the calculated lifetime. In general, nothing stated herein shall be construed as a guarantee of durability.
Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay’s knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer’s responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer’s technical experts. Product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.