

www.vishay.com

Vishay Beyschlag

Precision Automotive High Voltage Thin Film MELF Resistors

LINKS TO ADDITIONAL RESOURCES

MMA 0204 HV AT and MMB 0207 HV AT precision thin film MELF resistors are the perfect choice for most fields of modern professional electronics where reliability and stability is of major concern. The typical applications in the fields of automotive, lighting, industrial, and medical equipment reflect the outstanding level of proven reliability.

FEATURES

- High operating voltage, U_{max.} = 1200 V
- AEC-Q200 qualified
- Advanced metal film technology
- · Intrinsic sulfur resistance
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

AUTOMOTIVE GRADE

APPLICATIONS

- Automotive
- Lighting
- Industrial
- Medical equipment

TECHNICAL SPECIFICATIONS						
DESCRIPTION	MMA 0204 HV AT	MMB 0207 HV AT				
DIN size	0204	0207				
Metric size code	RC3715M	RC6123M				
Resistance range	340 kΩ to 5.11 MΩ	340 k Ω to 10 M Ω				
Resistance tolerance	± 0.5 %; ± 0.2	5 %; ± 0.1 %				
Temperature coefficient	± 25 ppm/K					
Voltage coefficient c	< 1 ppm/V					
Rated dissipation, $P_{70}^{(1)}$	0.4 W	1.0 W				
Operating voltage, U _{max.} AC _{RMS} /DC	700 V	1200 V				
Permissible film temperature, $v_{\text{F max.}}^{(1)}$	155 °C					
Operating temperature range (2)	-55 °C to 155 °C					
Permissible voltage against ambient (insulation):						
1 min, U_{ins}	300 V	500 V				
Internal thermal resistance (typical) (1)	46 K/W	26 K/W				
Failure rate: FIT _{observed}	≤ 0.05 x 10 ⁻⁹ /h					

Notes

- (1) Please refer to APPLICATION INFORMATION below
- (2) Please refer to table TEST PROCEDURES AND REQUIREMENTS, see below

APPLICATION INFORMATION

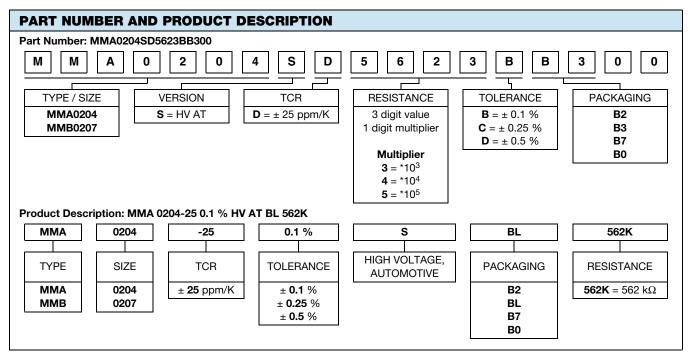
When the resistor dissipates power, a temperature rise above the ambient temperature occurs, dependent on the thermal resistance of the assembled resistor together with the printed circuit board. The rated dissipation applies only if the permitted film temperature is not exceeded.

Please consider the application note "Thermal Management in Surface-Mounted Resistor Applications" (www.vishay.com/doc?28844) for information on the general nature of thermal resistance.

These resistors do not feature a limited lifetime when operated within the permissible limits. However, resistance value drift increasing over operating time may result in exceeding a limit acceptable to the specific application, thereby establishing a functional lifetime.

Vishay Beyschlag

MAXIMUM RESISTANCE CHANGE AT RATED DISSIPATION						
OPERATION MODE		STANDARD	POWER			
	MMA 0204 HV AT	0.25 W	0.4 W			
Rated dissipation, P ₇₀	MMB 0207 HV AT	0.4 W	1.0 W			
Operating temperature range		-55 °C to 125 °C	-55 °C to 155 °C			
Permissible film temperature, $\vartheta_{\rm F}$ max.		125 °C	155 °C			
	MMA 0204 HV AT	340 k Ω to 5.11 M Ω	340 kΩ to 5.11 MΩ			
Max. resistance change at P_{70} for resistance range, $ \Delta R/R $ after:	MMB 0207 HV AT	340 k Ω to 10 M Ω	340 k Ω to 10 M Ω			
	1000 h	≤ 0.25 %	≤ 0.5 %			
	8000 h	≤ 0.5 %	≤ 1 %			
	225 000 h	≤ 1.5 %	≤3 %			


Note

The presented operation modes do not refer to different types of resistors, but actually show examples of different loads, that lead to
different film temperatures and different achievable load-life stability (drift) of the resistance value. A suitable low thermal resistance of the
circuit board assembly must be safeguarded in order to maintain the film temperature of the resistors within the specified limits. Please
consider the application note "Thermal Management in Surface-Mounted Resistor Applications" (www.vishay.com/doc?28844) for
information on the general nature of thermal resistance

TEMPERATURE COEFFICIENT AND RESISTANCE RANGE							
TYPE / SIZE TCR		TOLERANCE RESISTANCE		E-SERIES			
		± 0.5 %					
MMA 0204 HV AT	± 25 ppm/K	± 0.25 %	340 k Ω to 5.11 M Ω	E24; E192			
		± 0.1 %					
		± 0.5 %					
MMB 0207 HV AT	± 25 ppm/K	± 0.25 %	340 k Ω to 10 M Ω	E24; E192			
		± 0.1 %					

PACKAGING							
TYPE / SIZE	CODE	QUANTITY	PACKAGING STYLE	WIDTH	PITCH	PACKAGING DIMENSIONS	
MMA 0204 HV AT	B3 = BL	3000	Antistatic blister tape acc. IEC 60286-3, Type 2a	8 mm	4 mm	Ø 180 mm / 7"	
	B0	10 000				Ø 330 mm / 13"	
MMB 0207 HV AT	B2	2000		12 mm		Ø 180 mm / 7"	
	B7	7000				Ø 330 mm / 13"	

Vishay Beyschlag

Note

Products can be ordered using either the PART NUMBER or the PRODUCT DESCRIPTION

www.vishay.com

Vishay Beyschlag

DESCRIPTION

Production is strictly controlled and follows an extensive set of instructions established for reproducibility. A homogeneous film of metal alloy is deposited on a high grade ceramic body (Al₂O₃) and conditioned to achieve the desired temperature coefficient. Nickel plated steel termination caps are firmly pressed on the metallised rods. A special laser is used to achieve the target value by smoothly cutting a helical groove in the resistive layer without damaging the ceramics. The resistor elements are covered by a protective coating designed for electrical, mechanical and climatic protection. The terminations receive a final pure matte tin on nickel plating. Four (E24), respectively five (E192) color code rings designate the resistance value and tolerance in accordance with **IEC 60062** (1).

The result of the determined production is verified by an extensive testing procedure performed on 100 % of the individual resistors. This includes full screening for the elimination of products with a potential risk of early life failures according to EN 140401-803, 2.1.2.2. Only accepted products are laid directly into the blister tape in accordance with **IEC 60286-3**, **Type 2a** (1).

ASSEMBLY

The resistors are suitable for processing on automatic SMD assembly systems. They are suitable for automatic soldering using wave, reflow or vapor phase as shown in **IEC 61760-1** ⁽¹⁾. The encapsulation is resistant to all cleaning solvents commonly used in the electronics industry, including alcohols, esters and aqueous solutions. The suitability of conformal coatings, potting compounds and their processes, if applied, shall be qualified by appropriate means to ensure the long term stability of the whole system.

The resistors are completely lead (Pb)-free, the pure matte tin plating provides compatibility with lead (Pb)-free and lead containing soldering processes. Solderability is specified for 2 years after production or requalification, however, excellent solderability is proven after extended storage in excess of 10 years. The permitted storage time is 20 years. The immunity of the plating against tin whisker growth has been proven under extensive testing.

MATERIALS

Vishay acknowledges the following systems for the regulation of hazardous substances:

- IEC 62474, Material Declaration for Products of and for the Electrotechnical Industry, with the list of declarable substances given therein (2)
- The Global Automotive Declarable Substance List (GADSL) (3)
- The REACH regulation (1907/2006/EC) and the related list of substances with very high concern (SVHC) (4) for its supply chain

The products do not contain any of the banned substances as per IEC 62474, GADSL, or the SVHC list, see www.vishay.com/how/leadfree.

Hence the products fully comply with the following directives:

- 2000/53/EC End-of-Life Vehicle Directive (ELV) and Annex II (ELV II)
- 2011/65/EU Restriction of the Use of Hazardous Substances Directive (RoHS) with amendment 2015/863/EU
- 2012/19/EU Waste Electrical and Electronic Equipment Directive (WEEE)

Vishay pursues the elimination of conflict minerals from its supply chain, see the Conflict Minerals Policy at www.vishay.com/doc?49037.

APPROVALS

Where applicable, the resistors are tested in accordance with **EN 140401-803** which refers to **EN 60115-1**, **EN 60115-8** and the variety of environmental test procedure of the **IEC 60068** ⁽¹⁾ series.

Vishay Beyschlag has achieved "Approval of Manufacturer" in accordance with IECQ 03-1. The release certificate for "Technology Approval Schedule" in accordance with CECC 240001 based on IECQ 03-3-1 is granted for the Vishay Beyschlag manufacturing process. The resistors are qualified according to AEC-Q200.

RELATED PRODUCTS

For thin film products with a wider resistance, see the datasheet:

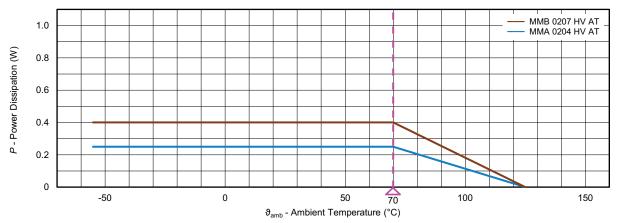
 "Professional Thin Film MELF Resistors" (www.vishay.com/doc?28713)

For products with tighter precision specification, see the datasheet:

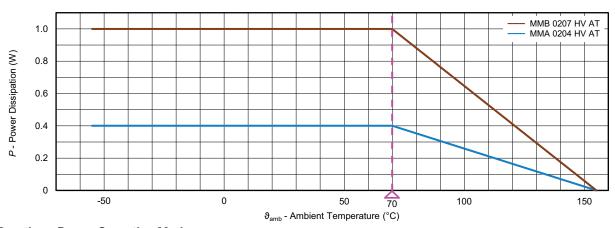
 "Precision Thin Film MELF Resistors" (www.vishay.com/doc?28714)

For high voltage products with focus on industrial applications see the datasheet:

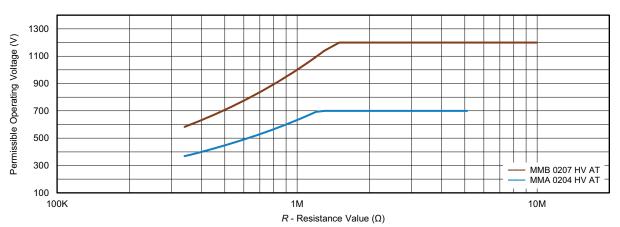
 "Professional Thin Film High Voltage MELF Resistors" (www.vishav.com/doc?28880)


Notes

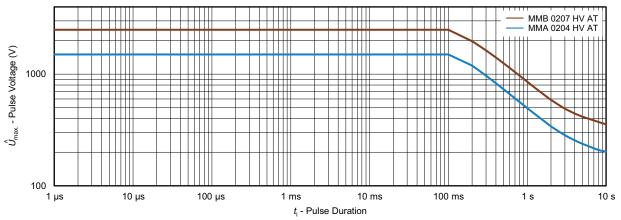
Revision: 22-Sep-2023


- (1) The quoted IEC standards are also released as EN standards with the same number and identical contents
- (2) The IEC 62474 list of declarable substances is maintained in a dedicated database, which is available at http://std.iec.ch/iec62474
- (3) The Global Automotive Declarable Substance List (GADSL) is maintained by the American Chemistry Council and available at www.gadsl.org
- (4) The SVHC list is maintained by the European Chemical Agency (ECHA) and available at http://echa.europa.eu/candidate-list-table

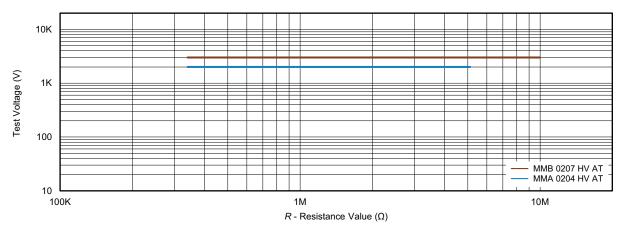
Vishay Beyschlag


FUNCTIONAL PERFORMANCE

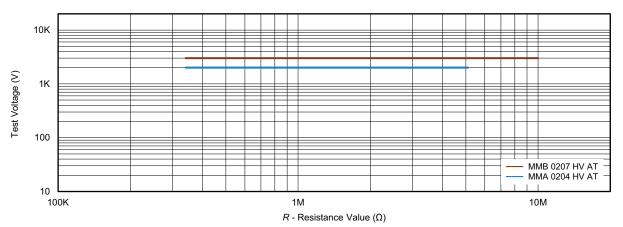
Derating - Standard Operation Mode


Derating - Power Operation Mode

The permissible operating voltage equals the rated voltage $U_{\rm R}=\sqrt{P_{70}\,{\rm x}\,R}.$ For ambient temperatures above 70 °C power derating must be considered


Nominal Operating Voltage

Vishay Beyschlag


Maximum pulse voltage, single and continuous pulses; applicable if $\hat{P} \leq \hat{P}_{\max}$; for permissible resistance change \pm (0.5 % R + 0.01 Ω)

Pulse Voltage

Pulse load rating in accordance with IEC 60115-1, 8.2; 1.2 µs/50 µs; 5 pulses at 12 s intervals; for permissible resistance change \pm (0.5 % R + 0.05 $\Omega)$

1.2/50 Pulse

Pulse load rating in accordance with IEC 60115-1, 8.2; 10 μ s/700 μ s; 10 pulses at 1 minute intervals; for permissible resistance change \pm (0.5 % R + 0.05 Ω)

10/700 Pulse

Vishay Beyschlag

TESTS AND REQUIREMENTS

All tests are carried out in accordance with the following specifications:

EN 60115-1, generic specification

EN 60115-8, sectional specification

EN 140401-803, detail specification

IEC 60068-2-xx, test methods

The parameters stated in the Test Procedures and Requirements table are based on the required tests and permitted limits of EN 140401-803. The table presents only the most important tests, for the full test schedule refer to the documents listed above. However, some additional tests and a number of improvements against those minimum requirements have been included.

The testing also covers most of the requirements specified by EIA/ECA-703 and JIS-C-5201-1.

The tests are carried out under standard atmospheric conditions in accordance with IEC 60068-1, 4.3, whereupon the following values are applied:

Temperature: 15 °C to 35 °C Relative humidity: 25 % to 75 %

Air pressure: 86 kPa to 106 kPa (860 mbar to 1060 mbar)

A climatic category LCT / UCT / 56 is applied, defined by the lower category temperature (LCT), the upper category temperature (UCT), and the duration of exposure in the damp heat, steady state test (56 days).

The components are mounted for testing on printed circuit boards in accordance with EN 60115-8, 2.4.2, unless otherwise specified.

TEST PROCEDURES AND REQUIREMENTS							
EN 60115-1	IEC 60068-2 ⁽¹⁾ TEST	TEST	PROCEDURE		REMENTS E CHANGE (△ <i>R</i>)		
CLAUSE	METHOD			HIGH ACCURACY	REGULAR ACCURACY		
			Stability for product types:				
			MMA 0204 HV AT	340 k Ω to 1 M Ω	1.01 M Ω to 5.11 M Ω		
			MMB 0207 HV AT	340 k Ω to 1 M Ω	1.01 M Ω to 10 M Ω		
4.5	-	Resistance	-	$\pm 0.5 \% R; \pm 0.2$	25 % <i>R</i> ; ± 0.1 % <i>R</i>		
4.8	-	Temperature coefficient	At (20 / -55 / 20) °C and (20 / 155 / 20) °C	± 25	ppm/K		
		Endurance at 70 °C: standard	$U = \sqrt{P_{70} \times R} \le U_{\text{max.}};$ whichever is the less severe; 1.5 h on; 0.5 h off; 70 °C; 1000 h	± (0.2	25 % <i>R</i>)		
		operation mode	70 °C; 8000 h	± (0.5 % R)			
4.25.1	-	Endurance at 70 °C:	$U = \sqrt{P_{70} \times R} \le U_{\text{max}},$ whichever is the less severe; 1.5 h on; 0.5 h off;	,	•		
		power operation mode	70 °C; 1000 h	± (0.5 % R)			
			70 °C; 8000 h	± (1 % R)			
4.05.0		Endurance at	125 °C; 1000 h	± (0.15 % R)	± (0.25 % R)		
4.25.3	İ	upper category temperature	155 °C; 1000 h	± (0.3 % R)	± (0.5 % R)		
4.24	78 (Cab)	Damp heat, steady state	(40 ± 2) °C; 56 days; (93 ± 3) % RH	± (0.15 % R) ± (0.25 % R)			
-	-	Damp heat, steady state, accelerated, power operation mode	(85 ± 2) °C; (85 ± 5) % RH; 1000 h; $U = \sqrt{0.1} \times P_r \times R_n$ $(\text{for } U_r < 500 \text{ V};$ $U = 0.1 \times \sqrt{P_r \times R_n}$ $(\text{for } U_r \ge 500 \text{ V})$ MMA 0204 HV AT: MMB 0207 HV AT:	± (0.25 % <i>R</i>) ± (0.5 % <i>R</i>)	± (2 % R) ± (2 % R)		
_	1 (Ab)	Cold	-55 °C; 2 h	± (0.5 % A) ± (2 % A) ± (0.02 % R)			
4.19	14 (Na)	Rapid change of temperature	30 min at LCT; 30 min at UCT; LCT = -55 °C; UCT = 125 °C	± (0.0	<u> </u>		
			1000 cycles	± (0.2 % R)			

www.vishay.com

Vishay Beyschlag

TEST PR	TEST PROCEDURES AND REQUIREMENTS							
EN 60115-1	IEC 60068-2 ⁽¹⁾ TEST	TEST	PROCEDURE	REQUIREMENTS PERMISSIBLE CHANGE (ΔR)				
CLAUSE METHOD			HIGH ACCURACY	REGULAR ACCURACY				
			Stability for product types:					
			MMA 0204 HV AT	340 k Ω to 1 M Ω	1.01 M Ω to 5.11 M Ω			
			MMB 0207 HV AT	340 k Ω to 1 M Ω	1.01 M Ω to 10 M Ω			
4.13	-	Short time overload: standard operation mode	$U = 2.5 \times \sqrt{P_{70} \times R}$	± (0.03 % R)	± (0.1 % <i>R</i>)			
		Short time overload: power operation mode	≤ 2 × U _{max} ; 5 s	± (0.05 % R)	± (0.15 % R)			
4.27	-	Single pulse high voltage overload: standard operation mode	Severity no. 4: $U = 10 \times \sqrt{P_{70} \times R}$ $\leq 2 \times U_{\text{max}}$;	± (0.1 % <i>R</i>)	± (0.25 % R)			
		Single pulse high voltage overload: power operation mode	10 pulses 10 μs/700 μs	± (0.2 % R)	± (0.5 % R)			
4.39	_	Periodic electric overload: standard operation mode	$U = \sqrt{15 \times P_{70} \times R}$ $\leq 2 \times U_{\text{max.}};$	± (0.1 % <i>R</i>)	± (0.5 % R)			
4.90		Periodic electric overload: power operation mode	0.1 s on; 2.5 s off; 1000 cycles	± (0.2 % R)	± (1.0 % <i>R</i>)			
4.22	6 (Fc)	Vibration	Endurance by sweeping; 10 Hz to 2000 Hz; no resonance; amplitude ≤ 1.5 mm or ≤ 200 m/s²; 7.5 h	± (0.03 % R)				
4.38	-	Electrostatic discharge (human body model)	IEC 61340-3-1 ⁽¹⁾ ; 3 pos. + 3 neg. discharges MMA 0204 HV AT: 6 kV MMB 0207 HV AT: 8 kV	± (0.5 % <i>R</i>)				
			Solder bath method; SnPb40; non-activated flux; (215 ± 3) °C; (3 ± 0.3) s	Good tinning (≥ 95 % covered); no visible damage				
4.17	58 (Td)	Solderability	Solder bath method; SnAg3Cu0.5 or SnAg3.5; non-activated flux; (245 ± 5) °C; (3 ± 0.3) s	Good tinning (≥ 95 % covered); no visible damage				
		Resistance to	Solder bath method; (260 ± 5) °C; (10 ± 1) s	± (0.05 % R)	± (0.25 % R)			
4.18	58 (Td)	soldering heat	Reflow method 2 (IR/forced gas convection); (260 ± 5) °C; (10 ± 1) s	± (0.05 % R)	± (0.1 % R)			
4.29	45 (XA)	Component solvent resistance	Isopropyl alcohol; 50 °C; method 2	No visible damage				
4.30	45 (XA)	Solvent resistance of marking	Isopropyl alcohol; 50 °C; method 1, toothbrush	Marking legible; no visible damage				
4.32	21 (Ue ₃)	Shear (adhesion)	45 N	No visible damage				
4.33	21 (Ue ₁)	Substrate bending	Depth 2 mm, 3 times	No visible damage, no open circuit in bent position $\pm (0.05 \% R)$				
4.7	-	Voltage proof	$U_{\rm RMS} = U_{\rm ins}$; 60 s	No flashover	or breakdown			
4.35	-	Flammability	IEC 60695-11-5 ⁽¹⁾ , needle flame test; 10 s	No burning after 30 s				

Note

⁽¹⁾ The quoted IEC standards are also released as EN standards with the same number and identical contents

DIMENSIONS

Vishay Beyschlag

K L₁ L

DIMENSIONS AND MASS							
TYPE / SIZE	TYPE / SIZE L D L _{1 min.} D ₁ K MASS (mm) (mm) (mm) (mm)						
MMA 0204 HV AT	3.6 + 0 / - 0.2	1.4 + 0 / - 0.1	1.8	D + 0 / - 0.15	0.75 ± 0.1	22	
MMB 0207 HV AT	5.8 + 0 / - 0.15	2.2 + 0 / - 0.2	3.2	D + 0 / - 0.2	1.15 ± 0.1	80	

Notes

- Color code marking is applied according to IEC 60062 ⁽¹⁾ in four bands (E24 series) or in five bands (E192 series). Each color band appears
 as a single solid line, voids are permissible if at least 2/3 of the band is visible from each radial angle of view. The last color band for tolerance
 is approximately 50 % wider than the other bands.
- An interrupted violet band between the 3rd and 4th full band identifies the special high voltage type. An interrupted band between the 4th and 5th full band indicates the temperature coefficient (yellow = TC25).
- (1) The quoted IEC standards are also released as EN standards with the same number and identical contents.

SOLDERING RECOMMENDATIONS

For recommended solder pad dimensions please refer to www.vishay.com/doc?28950.

For recommended soldering profiles please refer to www.vishay.com/doc?31090.

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Vishay products are not designed for use in life-saving or life-sustaining applications or any application in which the failure of the Vishay product could result in personal injury or death unless specifically qualified in writing by Vishay. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.