TNPW High Stability Thin Film Chip Resistors

FEATURES
- Metal film layer on high quality ceramic
- SnPb termination plating, Pb content > 6 %
- Excellent overall stability at different environmental conditions ≤ 0.05 % (1000 h rated power at 70 °C)
- Low temperature coefficient and tight tolerances (± 0.1 %; ± 10 ppm/K)
- Single lot date code available

APPLICATIONS
- Military
- Avionics
- Industrial

TECHNICAL SPECIFICATIONS

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>TNPW0402</th>
<th>TNPW0603</th>
<th>TNPW0805</th>
<th>TNPW1206</th>
<th>TNPW1210 (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Imperial size</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metric size code</td>
<td>RR1005M</td>
<td>RR1608M</td>
<td>RR2012M</td>
<td>RR3216M</td>
<td>RR3225M</td>
</tr>
<tr>
<td>Resistance range</td>
<td>10 Ω to 100 kΩ</td>
<td>10 Ω to 332 kΩ</td>
<td>10 Ω to 1 MΩ</td>
<td>10 Ω to 2 MΩ</td>
<td>10 Ω to 3.01 MΩ</td>
</tr>
<tr>
<td>Resistance tolerance</td>
<td>± 1 %; ± 0.5 %; ± 0.1 %</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature coefficient</td>
<td>± 50 ppm/K; ± 25 ppm/K; ± 15 ppm/K; ± 10 ppm/K</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Climatic category (LCT/UCT/days)</td>
<td>55/125/56</td>
<td>55/125/56</td>
<td>55/125/56</td>
<td>55/125/56</td>
<td>55/125/56</td>
</tr>
<tr>
<td>Rated dissipation, P_{70} (2)</td>
<td>0.063 W</td>
<td>0.1 W</td>
<td>0.125 W</td>
<td>0.25 W</td>
<td>0.33 W</td>
</tr>
<tr>
<td>Operating voltage, U_{max} AC RMS or DC</td>
<td>50 V</td>
<td>75 V</td>
<td>150 V</td>
<td>200 V</td>
<td>200 V</td>
</tr>
<tr>
<td>Permissible film temperature, Θ_{max}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>155 °C</td>
</tr>
<tr>
<td>Operating Temperature Range</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-55 °C to 125 °C (155 °C)</td>
</tr>
<tr>
<td>Thermal resistance (3)</td>
<td>870 K/W</td>
<td>550 K/W</td>
<td>440 K/W</td>
<td>220 K/W</td>
<td>170 K/W</td>
</tr>
<tr>
<td>Insulation voltage: U_{max} 1 min</td>
<td>75 V</td>
<td>100 V</td>
<td>200 V</td>
<td>300 V</td>
<td>300 V</td>
</tr>
<tr>
<td>Continuous</td>
<td>75 V</td>
<td>75 V</td>
<td>75 V</td>
<td>75 V</td>
<td>75 V</td>
</tr>
</tbody>
</table>

Notes
(1) The detail specification EN140401-801 does not cover this product size.
(2) Rated voltage $\sqrt{P} \times \Theta$. The power dissipation on the resistor generates a temperature rise against the local ambient, depending on the heat flow support of the printed-circuit board (thermal resistance). The rated dissipation applies only if the permitted film temperature is not exceeded.
(3) Measuring conditions in accordance with EN 140401-801.

Notes
(1) The detail specification EN140401-801 does not cover this product size.
(2) Rated voltage $\sqrt{P} \times \Theta$. The power dissipation on the resistor generates a temperature rise against the local ambient, depending on the heat flow support of the printed-circuit board (thermal resistance). The rated dissipation applies only if the permitted film temperature is not exceeded.
(3) Measuring conditions in accordance with EN 140401-801.
TEMPERATURE COEFFICIENT AND RESISTANCE RANGE

<table>
<thead>
<tr>
<th>TYPE</th>
<th>TCR</th>
<th>TOLERANCE</th>
<th>RESISTANCE</th>
<th>E-SERIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNPW0402</td>
<td>±50 ppm/K</td>
<td>± 1 %</td>
<td>10 Ω to 100 kΩ</td>
<td>E24; E96</td>
</tr>
<tr>
<td></td>
<td>±25 ppm/K</td>
<td>± 0.5 %</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>±15 ppm/K</td>
<td>± 0.1 %</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>±10 ppm/K</td>
<td>± 0.1 %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TNPW0603</td>
<td>±50 ppm/K</td>
<td>± 1 %</td>
<td>10 Ω to 332 kΩ</td>
<td>E24; E96</td>
</tr>
<tr>
<td></td>
<td>±25 ppm/K</td>
<td>± 0.5 %</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>±15 ppm/K</td>
<td>± 0.1 %</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>±10 ppm/K</td>
<td>± 0.1 %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TNPW0805</td>
<td>±50 ppm/K</td>
<td>± 1 %</td>
<td>10 Ω to 1.0 MΩ</td>
<td>E24; E96</td>
</tr>
<tr>
<td></td>
<td>±25 ppm/K</td>
<td>± 0.5 %</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>±15 ppm/K</td>
<td>± 0.1 %</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>±10 ppm/K</td>
<td>± 0.1 %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TNPW1206</td>
<td>±50 ppm/K</td>
<td>± 1 %</td>
<td>10 Ω to 2.0 MΩ</td>
<td>E24; E96</td>
</tr>
<tr>
<td></td>
<td>±25 ppm/K</td>
<td>± 0.5 %</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>±15 ppm/K</td>
<td>± 0.1 %</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>±10 ppm/K</td>
<td>± 0.1 %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TNPW1210</td>
<td>±50 ppm/K</td>
<td>± 1 %</td>
<td>10 Ω to 3.01 MΩ</td>
<td>E24; E96</td>
</tr>
<tr>
<td></td>
<td>±25 ppm/K</td>
<td>± 0.5 %</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>±15 ppm/K</td>
<td>± 0.1 %</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>±10 ppm/K</td>
<td>± 0.1 %</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PART NUMBER AND PRODUCT DESCRIPTION

Part Number: TNPW12061K32DETA

<table>
<thead>
<tr>
<th>TYPE/SIZE</th>
<th>RESISTANCE</th>
<th>TOLERANCE</th>
<th>TCR</th>
<th>PACKAGING</th>
<th>SPECIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNPW0402</td>
<td>R = Decimal</td>
<td>B = ± 0.1 %</td>
<td>H = ± 50 ppm/K</td>
<td>TP1</td>
<td>Blank = Standard</td>
</tr>
<tr>
<td>TNPW0603</td>
<td>K = Thousand</td>
<td>D = ± 0.5 %</td>
<td>E = ± 25 ppm/K</td>
<td>RT7</td>
<td>BV20545 = Single lot date code</td>
</tr>
<tr>
<td>TNPW0805</td>
<td>M = Million</td>
<td>F = ± 1.0 %</td>
<td>X = ± 15 ppm/K</td>
<td>R52</td>
<td></td>
</tr>
<tr>
<td>TNPW1206</td>
<td>(4 digits)</td>
<td></td>
<td>Y = ± 10 ppm/K</td>
<td>RT1</td>
<td></td>
</tr>
<tr>
<td>TNPW1210</td>
<td></td>
<td></td>
<td></td>
<td>RT6</td>
<td></td>
</tr>
</tbody>
</table>

Product Description: TNPW-1206 1.32K 0.5 % T-9 RT1

Notes
- The products can be ordered using either the PRODUCT DESCRIPTION or the PART NUMBER.

Revision: 24-Jan-14

Document Number: 31006

For technical questions, contact: thinfilmchip@vishay.com

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
DESCRIPTION

The production is strictly controlled and follows an extensive set of instructions established for reproducibility. A homogeneous film of metal alloy is deposited on a high grade ceramic body (Al₂O₃) and conditioned to achieve the desired temperature coefficient. A special laser is used to achieve the target value by smoothly cutting an appropriate groove in the resistive layer without damaging the ceramics. The resistor elements are covered by a protective coating designed for electrical, mechanical and climatic protection. The terminations receive a final tin-lead (SnPb) on nickel plating. The result of the determined production is verified by an extensive testing procedure performed on 100% of the individual resistors. Only accepted products are placed into the tape in accordance with IEC 60286-3, Type I. Resistance marking is not applied on TNPW0402.

ASSEMBLY

The resistors are suitable for processing on automatic SMD assembly systems. They are suitable for automatic soldering using wave, reflow or vapour phase as shown in IEC 61760-1 (1). Solderability is specified for 2 years after production. The permitted storage time is 20 years.

The terminations are plated with SnPb solder, controlled for a minimum lead Pb content of 6% for compliance with the respective requirements of Bellcore, MIL and ESCC specifications.

The encapsulation is resistant to all cleaning solvents commonly used in the electronics industry, including alcohols, esters and aqueous solutions.

The suitability of conformal coatings, if applied, shall be qualified by appropriate means to ensure the long-term stability of the whole system.

RELATED PRODUCTS

TNPS ... ESCC high-reliability thin film chip resistors are the premium choice for design and manufacture of equipment, where mature technology and proven reliability are of utmost importance. (www.vishay.com/doc?28789)

PACKAGING

<table>
<thead>
<tr>
<th>TYPE</th>
<th>CODE</th>
<th>QUANTITY</th>
<th>PACKAGING STYLE</th>
<th>WIDTH</th>
<th>PITCH</th>
<th>REEL DIAMETER</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNPW0402</td>
<td>TP1 = TP (1)</td>
<td>1000</td>
<td>Tape and reel cardboard tape acc. IEC 60286-3 Type I</td>
<td>8 mm</td>
<td>2</td>
<td>180 mm/7"</td>
</tr>
<tr>
<td>TNPW0402</td>
<td>RT7 = TD</td>
<td>10 000</td>
<td></td>
<td>8 mm</td>
<td>2</td>
<td>180 mm/7"</td>
</tr>
<tr>
<td>TNPW0603</td>
<td>R52 = CN (1)</td>
<td>1000</td>
<td></td>
<td>8 mm</td>
<td>4</td>
<td>180 mm/7"</td>
</tr>
<tr>
<td>TNPW0805</td>
<td>R52 = CN (1)</td>
<td>1000</td>
<td></td>
<td>8 mm</td>
<td>4</td>
<td>180 mm/7"</td>
</tr>
<tr>
<td>TNPW1206</td>
<td>R52 = CN (1)</td>
<td>1000</td>
<td></td>
<td>8 mm</td>
<td>4</td>
<td>180 mm/7"</td>
</tr>
<tr>
<td>TNPW1210</td>
<td>R52 = CN (1)</td>
<td>1000</td>
<td></td>
<td>8 mm</td>
<td>4</td>
<td>180 mm/7"</td>
</tr>
</tbody>
</table>

Note
(1) 1000 pieces packaging quantity is only available for precision resistors with tolerance ± 0.1%.
Non-Linearity

Current Noise

HF Performance

HF Performance

HF Performance

HF Performance
Derating

Note
- The solid line is based on IEC/EN reference test conditions which is considered as standard mode. However, above that the maximum permissible film temperature is 155 °C (dashed line).

Single-Pulse High Voltage Overload Test
10/700 μs EN 140000 4.27

Single Pulse
- Maximum pulse load, single pulse: applicable if $P \rightarrow 0$ and $n \leq 1000$ and $U \leq U_{\text{max}}$; for permissible resistance change equivalent to 8000 h operation in standard operation mode

Pulse Voltage
- Maximum pulse voltage, single and continuous pulses; applicable if $P \leq P_{\text{max}}$; for permissible resistance change equivalent to 8000 h operation in standard operation mode

Continuous Pulse
- Maximum pulse load, continuous pulses; applicable if $P \leq P_{\text{max}}$ and $U \leq U_{\text{max}}$; for permissible resistance change equivalent to 8000 h operation in standard operation mode
TEST AND REQUIREMENTS

All tests are carried out in accordance with the following specifications:
IEC 60115-1, generic specification (includes tests)
EN 140400, sectional specification (includes schedule for qualification approval)
EN 140401-801, detail specification (includes schedule for conformance inspection)

The testing also covers most of the requirements specified by EIA/ECA-703 and JIS-C-5201-1. The tests are carried out under standard atmospheric conditions in accordance with IEC 60068-1, 5.3. A climate category is applied, defined by the lower category temperature (LCT), the upper category temperature (UCT), and the number of days of the damp heat, steady-state test (56).

TEST PROCEDURES AND REQUIREMENTS

<table>
<thead>
<tr>
<th>EN 60115-1 CLAUSE</th>
<th>IEC 60068-2 TEST METHOD</th>
<th>TEST</th>
<th>PROCEDURE</th>
<th>REQUIREMENTS PERMISSIBLE CHANGE (ΔR)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Stability for product type:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TNPW0402</td>
<td>± 0.1 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TNPW0603</td>
<td>± 25 ppm/K; ± 15 ppm/K; ± 10 ppm/K</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TNPW0805</td>
<td>± 0.05 % R + 0.01 Ω</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TNPW1206</td>
<td>± 0.05 % R + 0.01 Ω</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TNPW1210</td>
<td>± 0.05 % R + 0.01 Ω</td>
</tr>
<tr>
<td>4.5</td>
<td>-</td>
<td>Resistance</td>
<td>-</td>
<td>± 0.1 %</td>
</tr>
<tr>
<td>4.8.4.2</td>
<td>-</td>
<td>Temperature coefficient</td>
<td>At (20/- 55/20) °C and (20/125/20) °C</td>
<td>± 25 ppm/K; ± 15 ppm/K; ± 10 ppm/K</td>
</tr>
<tr>
<td>4.25.1</td>
<td>-</td>
<td>Endurance at 70 °C</td>
<td>$U = \frac{P}{R}$, $R \leq U_{\max}$; 1.5 h on; 0.5 h off; 70 °C; 1000 h</td>
<td>± (0.1 % R + 0.02 Ω)</td>
</tr>
<tr>
<td>4.25.3</td>
<td>-</td>
<td>Endurance at upper category temperature</td>
<td>125 °C; 1000 h</td>
<td>± (0.1 % R + 0.02 Ω)</td>
</tr>
<tr>
<td>4.13</td>
<td>-</td>
<td>Short time overload</td>
<td>$U = 2.5 \times \frac{P}{R}$, $R \leq 2 \times U_{\max}$; 2 s</td>
<td>± (0.05 % R + 0.01 Ω)</td>
</tr>
<tr>
<td>4.24</td>
<td>78 (Cab)</td>
<td>Damp heat, steady state</td>
<td>(40 ± 2) °C; (93 ± 3) % RH; 56 days</td>
<td>± (0.1 % R + 0.02 Ω)</td>
</tr>
<tr>
<td>4.19</td>
<td>14 (Na)</td>
<td>Rapid change of temperature</td>
<td>30 min at - 55 °C; 30 min at 125 °C; 5 cycles</td>
<td>± (0.05 % R + 0.01 Ω)</td>
</tr>
<tr>
<td>4.18.2</td>
<td>58 (Td)</td>
<td>Resistance to soldering heat</td>
<td>Solder bath method; (260 ± 5) °C; (10 ± 1) s</td>
<td>± (0.05 % R + 0.01 Ω)</td>
</tr>
<tr>
<td>4.35</td>
<td>-</td>
<td>Flammability, needle flame test</td>
<td>IEC 60695-11-5; 10 s</td>
<td>No burning after 30 s</td>
</tr>
</tbody>
</table>
DIMENSIONS

<table>
<thead>
<tr>
<th>TYPE</th>
<th>H (mm)</th>
<th>L (mm)</th>
<th>W (mm)</th>
<th>Tt (mm)</th>
<th>Tb (mm)</th>
<th>MASS (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNPW0402</td>
<td>0.35 ± 0.05</td>
<td>1.0 ± 0.05</td>
<td>0.5 ± 0.05</td>
<td>0.2 ± 0.10</td>
<td>0.2 ± 0.10</td>
<td>0.65</td>
</tr>
<tr>
<td>TNPW0603</td>
<td>0.45 ± 0.10</td>
<td>1.6 ± 0.10</td>
<td>0.85 ± 0.10</td>
<td>0.3 ± 0.20</td>
<td>0.3 ± 0.20</td>
<td>2</td>
</tr>
<tr>
<td>TNPW0805</td>
<td>0.45 ± 0.10</td>
<td>2.0 ± 0.15</td>
<td>1.25 ± 0.15</td>
<td>0.4 ± 0.20</td>
<td>0.4 ± 0.20</td>
<td>5.5</td>
</tr>
<tr>
<td>TNPW1206</td>
<td>0.55 ± 0.10</td>
<td>3.2 ± 0.15</td>
<td>1.6 ± 0.15</td>
<td>0.5 ± 0.25</td>
<td>0.5 ± 0.25</td>
<td>10</td>
</tr>
<tr>
<td>TNPW1210</td>
<td>0.60 ± 0.15</td>
<td>3.2 ± 0.15</td>
<td>2.45 ± 0.15</td>
<td>0.5 ± 0.25</td>
<td>0.5 ± 0.25</td>
<td>16</td>
</tr>
</tbody>
</table>

SOLDER PAD DIMENSIONS

<table>
<thead>
<tr>
<th>TYPE</th>
<th>Y (mm)</th>
<th>X (mm)</th>
<th>G (mm)</th>
<th>Y (mm)</th>
<th>X (mm)</th>
<th>G (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNPW0402</td>
<td>0.4</td>
<td>0.6</td>
<td>0.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TNPW0603</td>
<td>0.5</td>
<td>0.9</td>
<td>1.0</td>
<td>0.9</td>
<td>0.9</td>
<td>1.0</td>
</tr>
<tr>
<td>TNPW0805</td>
<td>0.7</td>
<td>1.3</td>
<td>1.2</td>
<td>0.9</td>
<td>1.3</td>
<td>1.3</td>
</tr>
<tr>
<td>TNPW1206</td>
<td>0.9</td>
<td>1.7</td>
<td>2.0</td>
<td>1.1</td>
<td>1.7</td>
<td>2.3</td>
</tr>
<tr>
<td>TNPW1210</td>
<td>0.9</td>
<td>2.5</td>
<td>2.0</td>
<td>1.1</td>
<td>2.5</td>
<td>2.3</td>
</tr>
</tbody>
</table>
Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay’s knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer’s responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer’s technical experts. Product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.