

Vishay MCB

Rotational Absolute Inductive Encoder Diameter 27 mm Aero Variant and Industrial Variant Position Sensor

LINKS TO ADDITIONAL RESOURCES

QUICK REFERENCE DATA			
Sensor type	ROTATIONAL, inductive technology		
Output type	Cable or wires		
Market appliance	Aviation, industrial, military		
Dimensions	Diameter 27 mm		

and

FEATURES

• Especially dedicated for safety applications (aeronautic or industrial) with single or full redundant functions variants

RoHS COMPLIANT

- Dedicated architecture compatible with quality standard DO160/254 (on request)
- Rotational absolute inductive encoder
- High repeatability, high precision, high resolution, single turn
- Not sensitive to external magnetic fields (no hall effect cells), electrical fields and temperature
- Especially dedicated for harsh conditions (vibrations, shocks, EMC...)
- Plug and play, built-in self-monitoring, robust body, EMC protection, and SEU immunity
- Embedded supplying voltage survey and temperature survey to start the sensor at -40 °C
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

ELECTRICAL SPECIFICATIONS			
PARAMETER			
Voltage power supply (on sensor connector)	5 V_{DC} \pm 0.25 V_{DC} (from 5 V to 30 V \pm 5 % for analog output variant)		
Supply current at 5 V _{DC}	\leq 30 mA (about 16 mA at 10 V for analog output variant)		
Standard output format	SSI or analog ratiometric		
Useful electrical angle	360°		
Accuracy (over the temperature range)	Better than 12 bits (0.088°, 0.02 %)		
Repeatability	≥ 15 bits		
Resolution	262 144 points (18 bits, $\approx 0.0014^\circ$ or 16 bits for analog output variant)		
Startup time	≤ 20 ms		
Data latency time	≤ 10 μs		
Maximum sampling rate	\leq 23 kHz (at frequency SSI = 3 MHz)		
Noise	0.01° peak to peak		

MECHANICAL SPECIFICATIONS (All Versions)			
PARAMETER			
Mechanical angle	360°		
Maximum rotation speed	5000 rpm		
Weight (first stage)	≤ 23 g		
Weight (additional stage)	< 11 g		

RAIE027A, RAIE027I

Vishay MCB

SAP PART NUMBERING GUIDELINES										
TYPE	MODEL	DESIGN	SIZE (mm)	TYPE	FUNCTION	ACCURACY (BITS)	RESOLUTION (BITS)	OUTPUT	PACKAGING	OPTION
R = rotational	AI	E = encoder	027	A = aero I = industrial	1 2	12	18	A = analog CW J = SSI CCW	B = box	xxx = customized design

Note

• For analog output variant, contact us to provide the part number in function of supplying voltage value (5 V, or 10 V, or 24 V, ...)

PERFORMANCE	
PARAMETER	
Standard operating temperature range	-40 °C to +105 °C
Storage temperature range	-55 °C to +125 °C
Humidity	≤ 80 % no condensing
Environmental protection	Coating on PCB components (on request)
Vibrations	0.05 g^2 /Hz, 20 Hz to 2000 Hz for 1 hour along three major axis
Shocks	100 g , 6 ms, ½ sine (one on each axis)

EMC PARAMETERS (features tested on similar design RAIK060)				
PARAMETER	STANDARD	LEVEL		
Electrostatic discharge immunity (ESD)	61000-4-2:2008	Level 4 (8 kV) - contact discharge (important: valid only on the connector interface)		
Immunity of radiated radio-frequency electromagnetic field (80 MHz to 6 GHz)	EN 61000-4-3:2020	Level 3 (10 V/m)		
Immunity to conducted disturbances induced by radio-frequency fields (150 kHz to 80 GHz)	EN 61000-4-6:2014	Level 3 (10 V)		
Immunity to power frequency magnetic field (at 50 Hz)	EN 61000-4-8:2010	Level X (1500 A/m, 2 mT)		
Radiated emission (30 MHz to 1 GHz)	EN 55011	Class A Group 1 (Industrial ⁽¹⁾)		

Notes

- Levels compliant with EN IEC 61326-1, industrial
- The sensor does not integrate protection against surges caused by overvoltages from switching and lightning transients (61000-4-5). It is recommended to use external protection if this standard is to be applied. To minimize the risk, we recommend that the power supply cable does not exceed 3 meters, and the data line does not exceed 30 meters
- These levels of EMC parameters will be upgraded with next tests campaign
- ⁽¹⁾ This equipment is not intended for use in residential environments and may not provide adequate protection to radio reception in such environments

VARIANT (on request)

Possibility of replacing the detection function in inductive technology with magnetic technology, thus allowing technological redundancy.

The electrical performances and mechanical parameters remain the same. Current consumption is reduced.

OTHER INFORMATION

ATTENTION! Observe Precautions for Handling Electrostatic Sensitive Devices!

RAIE027A, RAIE027I

Vishay MCB

SENSOR DIMENSIONS

Vishay MCB

MOUNTING AND ELECTRICAL CONNECTION PROCEDURE

1. Observe precautions for handling electrostatic sensitive devices.

COMMUNICATION INTERFACES

SSI signal comply with the RS-422 standard, employing low voltage differential signal (LVDS). To ensure robust EMC immunity, it is highly recommended to use twisted pair wire:

• SSI: CLK+ twisted with CLK- / DATA+ twisted with DATA-

Power supply signal (VCC, GND) does not need to be twisted pair.

The typical impedance of signal lines is 120 Ω . The requirement for termination resistors depends on the total length of the communication bus and the communication speed employed.

7 WIRES CONNECTION				
NAME	WIRE COLOR			
VCC	Red	Twisted pair		
GND	White	Twisted pair		
DATA+	Green	Twisted pair		
DATA-	Black			
CLK+	Blue	To visit all a sin		
CLK-	Yellow	i wisted pair		
GH	Color to be confirmed			

Notes

Cable size: 28 AWG

[•] The GND wire is white and DATA- wire is black

Vishay MCB

SSI OUTPUT FORMAT

SSI Timing Diagram

SSI COMPATIBLE PARAMETERS					
DADAMETED	INFORMATION				
	MIN.	MAX.			
SSI configuration	SLAVE mode only				
Clock and data interface	RS422 according to the EIA-RS422				
Position data (D17 to D00)	18 bits binary code (0 to 262 143)				
Error detection (CRC7 to CRC0) Error detection (CRC7 to CRC0) CRC, 8 bits, inverted polynomial: 0x97 (X8 + X7 + X4 + X2 + X + CRC start value = "0"					
CRC data input	23 bits (from S4 to D00)				
Total number of bit	31 bits				
First clock delay period $(t_{fcd})^{(1)}$	4.2 μs	14 µs			
Propagation delay (t _{delay})	20 ns	50 ns			
Transfer time-out period - monoflop time (tout)	15 µs				
Time period between two consecutive clock sequences (t _{break})	20 µs	-			
Master clock frequency ($f_{clk} = 1/t_{clock}$)	100 kHz	3 MHz			
Master request frequency (freq = $1/t_{req}$)	-	20 kHz (t_{req} = 50 µs) ⁽²⁾			

Notes

(1) Position acquisition is synchronized with the first falling edge of CLK. The first clock delay period is required for data acquisition, calculation, and storage in the communication buffer

⁽²⁾ With 3 MHz master clock frequency

ANALOG OUTPUT

4 wires including 1 wire for GH (Good Health) output.

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Vishay products are not designed for use in life-saving or life-sustaining applications or any application in which the failure of the Vishay product could result in personal injury or death unless specifically qualified in writing by Vishay. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

© 2025 VISHAY INTERTECHNOLOGY, INC. ALL RIGHTS RESERVED

Revision: 01-Jan-2025

1