INTRODUCTION
Tantalum electrolytic capacitors are the preferred choice in applications where volumetric efficiency, stable electrical parameters, high reliability, and long service life are primary considerations. The stability and resistance to elevated temperatures of the tantalum/tantalum oxide/manganese dioxide system make solid tantalum capacitors an appropriate choice for today’s surface mount assembly technology.

Vishay Sprague has been a pioneer and leader in this field, producing a large variety of tantalum capacitor types for consumer, industrial, automotive, military, and aerospace electronic applications.

Tantalum is not found in its pure state. Rather, it is commonly found in a number of oxide minerals, often in combination with Columbium ore. This combination is known as “tantalite” when its contents are more than one-half tantalum. Important sources of tantalite include Australia, Brazil, Canada, China, and several African countries. Synthetic tantalite concentrates produced from tin slags in Thailand, Malaysia, and Brazil are also a significant raw material for tantalum production.

Electronic applications, and particularly capacitors, consume the largest share of world tantalum production. Other important applications for tantalum include cutting tools (tantalum carbide), high temperature super alloys, chemical processing equipment, medical implants, and military ordinance.

Vishay Sprague is a major user of tantalum materials in the form of powder and wire for capacitor elements and rod and sheet for high temperature vacuum processing.

THE BASICS OF TANTALUM CAPACITORS
Most metals form crystalline oxides which are non-protecting, such as rust on iron or black oxide on copper. A few metals form dense, stable, tightly adhering, electrically insulating oxides. These are the so-called “valve”metals and include titanium, zirconium, niobium, tantalum, hafnium, and aluminum. Only a few of these permit the accurate control of oxide thickness by electrochemical means. Of these, the most valuable for the electronics industry are aluminum and tantalum.

Capacitors are basic to all kinds of electrical equipment, from radios and television sets to missile controls and automobile ignition. Their function is to store an electrical charge for later use.

Capacitors consist of two conducting surfaces, usually metal plates, whose function is to conduct electricity. They are separated by an insulating material or dielectric. The dielectric used in all tantalum electrolytic capacitors is tantalum pentoxide.

Tantalum pentoxide compound possesses high-dielectric strength and a high-dielectric constant. As capacitors are being manufactured, a film of tantalum pentoxide is applied to their electrodes by means of an electrolytic process. The film is applied in various thicknesses and at various voltages and although transparent to begin with, it takes on different colors as light refracts through it. This coloring occurs on the tantalum electrodes of all types of tantalum capacitors. Rating for rating, tantalum capacitors tend to have as much as three times better capacitance/volume efficiency than aluminum electrolytic capacitors. An approximation of the capacitance/volume efficiency of other types of capacitors may be inferred from the following table, which shows the dielectric constant ranges of the various materials used in each type. Note that tantalum pentoxide has a dielectric constant of 26, some three times greater than that of aluminum oxide. This, in addition to the fact that extremely thin films can be deposited during the electrolytic process mentioned earlier, makes the tantalum capacitor extremely efficient with respect to the number of microfarads available per unit volume. The capacitance of any capacitor is determined by the surface area of the two conducting plates, the distance between the plates, and the dielectric constant of the insulating material between the plates.

In the tantalum electrolytic capacitor, the distance between the plates is very small since it is only the thickness of the tantalum pentoxide film. As the dielectric constant of the tantalum pentoxide is high, the capacitance of a tantalum capacitor is high if the area of the plates is large:

\[
C = \frac{eA}{t}
\]

where

- \(C\) = capacitance
- \(e\) = dielectric constant
- \(A\) = surface area of the dielectric
- \(t\) = thickness of the dielectric

Tantalum capacitors contain either liquid or solid electrolytes. In solid electrolyte capacitors, a dry material (manganese dioxide) forms the cathode plate. A tantalum lead is embedded in or welded to the pellet, which is in turn connected to a termination or lead wire. The drawings show the construction details of the surface mount types of tantalum capacitors shown in this catalog.

COMPARISON OF CAPACITOR DIELECTRIC CONSTANTS

<table>
<thead>
<tr>
<th>DIELECTRIC</th>
<th>DIELECTRIC CONSTANT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air or vacuum</td>
<td>1.0</td>
</tr>
<tr>
<td>Paper</td>
<td>2.0 to 6.0</td>
</tr>
<tr>
<td>Plastic</td>
<td>2.1 to 6.0</td>
</tr>
<tr>
<td>Mineral oil</td>
<td>2.2 to 2.3</td>
</tr>
<tr>
<td>Silicone oil</td>
<td>2.7 to 2.8</td>
</tr>
<tr>
<td>Quartz</td>
<td>3.8 to 4.4</td>
</tr>
<tr>
<td>Glass</td>
<td>4.8 to 8.0</td>
</tr>
<tr>
<td>Porcelain</td>
<td>5.1 to 5.9</td>
</tr>
<tr>
<td>Mica</td>
<td>5.4 to 8.7</td>
</tr>
<tr>
<td>Aluminum oxide</td>
<td>8.4</td>
</tr>
<tr>
<td>Tantalum pentoxide</td>
<td>26</td>
</tr>
<tr>
<td>Ceramic</td>
<td>12 to 400K</td>
</tr>
</tbody>
</table>

For technical questions, contact: polytech@vishay.com

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
SOLID ELECTROLYTE POLYMER TANTALUM CAPACITORS

Solid electrolyte polymer capacitors utilize sintered tantalum pellets as anodes. Tantalum pentoxide dielectric layer is formed on the entire surface of anode, which is further impregnated with highly conductive polymer as cathode system.

The conductive polymer layer is then coated with graphite, followed by a layer of metallic silver, which provides a conductive surface between the capacitor element and the outer termination (lead frame or other).

Molded chip polymer tantalum capacitor encases the element in plastic resins, such as epoxy materials. After assembly, the capacitors are tested and inspected to assure long life and reliability. It offers excellent reliability and high stability for variety of applications in electronic devices. Usage of conductive polymer cathode system provides very low equivalent series resistance (ESR), which makes the capacitors particularly suitable for high frequency applications.

TANTALUM CAPACITOR WITH POLYMER CATHODE TYPE T50 / T55 / T56

![Diagram of Tantalum Capacitor Type T50/T55/T56]

- Sintered tantalum pellet
- Polymer / carbon / silver coating
- Silver adhesive
- Epoxy encapsulation
- Anode polarity bar
- Solderable anode termination
- Lead frame welded to Ta wire

TANTALUM CAPACITOR WITH POLYMER CATHODE TYPE T58

![Diagram of Tantalum Capacitor Type T58]

- Sintered tantalum pellet
- Polymer / carbon / silver coating
- Glass reinforced epoxy resin substrate
- Copper pad
- Silver adhesive epoxy
- Bottom cathode termination (-)
- Bottom anode termination (+)
- Rating / marking
- Encapsulation
- Side anode termination (+)
- Side cathode termination (-)
TANTALUM CAPACITOR WITH POLYMER CATHODE TYPE T52

T52 E5 case

- Side cathode termination (-)
- Silver adhesive epoxy
- Bottom cathode termination (-)
- Silver plated copper substrate
- Sintered tantalum pellet
- Polymer / carbon / silver coating
- Bottom anode termination (+)
- Conductive strip
- Polarity bar marking
- Side anode termination (+)

T52 M1 case

- Side cathode termination (-)
- Silver adhesive epoxy
- Bottom cathode termination (-)
- Silver plated copper substrate
- Sintered tantalum pellet
- Polymer / carbon / silver coating
- Bottom anode termination (+)
- Conductive strip
- Polarity bar marking
- Side anode termination (+)

TANTALUM CAPACITOR WITH POLYMER CATHODE TYPE T54 / T59

- Top / bottom cathode termination (-)
- Side cathode termination (-)
- Silver plated copper substrate
- Silver adhesive epoxy
- Sintered tantalum pellet
- Top / bottom cathode termination (-)
- Top / bottom anode termination (+)
- Conductive strip
- Anode polarity marking
- Top / bottom anode termination (+)
- Side anode termination (+)
- Top / bottom anode termination (+)
- Polymer / carbon / silver coating
POLYMER CAPACITORS - MOLDED CASE

<table>
<thead>
<tr>
<th>SERIES</th>
<th>T50, T55, T56</th>
</tr>
</thead>
</table>

PRODUCT IMAGE

TYPE
- VPolyTan™, molded case, high performance polymer

FEATURES
- High performance

TEMPERATURE RANGE
- -55 °C to +105 °C

CAPACITANCE RANGE
- 3.3 μF to 1000 μF

VOLTAGE RANGE
- 2.5 V to 63 V

CAPACITANCE TOLERANCE
- ± 20 %

LEAKAGE CURRENT
- 0.1 CV

DISSIPATION FACTOR
- 8 % to 10 %

ESR
- 6 mΩ to 500 mΩ

CASE SIZES
- J, P, A, T, B, Z, V, D, C

TERMINATION FINISH
- Cases J, P, C: 100 % tin
- Case A, T, B, Z, V, D: Ni / Pd / Au

POLYMER CAPACITORS - LEADFRAMELESS MOLDED CASE

<table>
<thead>
<tr>
<th>SERIES</th>
<th>T52</th>
<th>T58</th>
<th>T59</th>
<th>T54</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRODUCT IMAGE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TYPE
- vPolyTan™ polymer surface mount chip capacitors, low profile, leadframeless molded type
- vPolyTan™ polymer surface mount chip capacitors, compact, leadframeless molded type
- vPolyTan™ polymer surface mount chip capacitors, low ESR, leadframeless molded type
- vPolyTan™ polymer surface mount chip capacitors, low ESR, leadframeless molded type, hi-rel commercial off-the-shelf (COTS)

FEATURES
- Low profile
- Small case size
- Multianode
- Hi-rel COTS, multianode

TEMPERATURE RANGE
- -55 °C to +105 °C
- -55 °C to +105 °C
- -55 °C to +105 °C
- -55 °C to +125 °C

CAPACITANCE RANGE
- 47 μF to 1500 μF
- 1 μF to 330 μF
- 15 μF to 470 μF
- 15 μF to 470 μF

VOLTAGE RANGE
- 10 V to 35 V
- 6.3 V to 35 V
- 16 V to 75 V
- 16 V to 75 V

CAPACITANCE TOLERANCE
- ± 20 %
- ± 20 %
- ± 10 %, ± 20 %
- ± 20 %

LEAKAGE CURRENT
- 0.1 CV

DISSIPATION FACTOR
- 10 %
- 8 % to 14 %
- 10 %
- 10 %

ESR
- 25 mΩ to 55 mΩ
- 50 mΩ to 500 mΩ
- 25 mΩ to 150 mΩ
- 25 mΩ to 150 mΩ

CASE SIZES
- E5, M1
- MM, M0, W0, W9, A0, AA, B0, BB
- EE
- EE

TERMINATION
- 100 % tin
- 100 % tin / lead
MOLDED CAPACITORS, T50 / T55 / T56 TYPES

PLASTIC TAPE AND REEL PACKAGING DIMENSIONS in millimeters

<table>
<thead>
<tr>
<th>TAPE WIDTH</th>
<th>8</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>A + 0 / - 3</td>
<td>Ø 180</td>
<td></td>
</tr>
<tr>
<td>B + 1 / 0</td>
<td>Ø 60</td>
<td></td>
</tr>
<tr>
<td>C ± 0.2</td>
<td>Ø 13</td>
<td></td>
</tr>
<tr>
<td>D ± 0.5</td>
<td>Ø 21</td>
<td></td>
</tr>
<tr>
<td>E ± 0.5</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>W ± 0.3</td>
<td>9.0</td>
<td>13.0</td>
</tr>
</tbody>
</table>

Note
- A reel diameter of 330 mm is also applicable

PLASTIC TAPE SIZE DIMENSIONS in millimeters

<table>
<thead>
<tr>
<th>CASE CODE</th>
<th>A ± 0.2</th>
<th>B ± 0.2</th>
<th>W ± 0.3</th>
<th>F ± 0.1</th>
<th>E ± 0.1</th>
<th>P1 ± 0.1</th>
<th>tmax</th>
</tr>
</thead>
<tbody>
<tr>
<td>J</td>
<td>1.0</td>
<td>1.8</td>
<td>8.0</td>
<td>3.5</td>
<td>1.75</td>
<td>4.0</td>
<td>1.3</td>
</tr>
<tr>
<td>P</td>
<td>1.4</td>
<td>2.2</td>
<td>8.0</td>
<td>3.5</td>
<td>1.75</td>
<td>4.0</td>
<td>1.6</td>
</tr>
<tr>
<td>A</td>
<td>1.9</td>
<td>3.5</td>
<td>8.0</td>
<td>3.5</td>
<td>1.75</td>
<td>4.0</td>
<td>2.5</td>
</tr>
<tr>
<td>T</td>
<td>3.1</td>
<td>3.8</td>
<td>8.0</td>
<td>3.5</td>
<td>1.75</td>
<td>4.0</td>
<td>1.7</td>
</tr>
<tr>
<td>B</td>
<td>3.1</td>
<td>3.8</td>
<td>8.0</td>
<td>3.5</td>
<td>1.75</td>
<td>4.0</td>
<td>2.5</td>
</tr>
<tr>
<td>C</td>
<td>3.7</td>
<td>6.3</td>
<td>12.0</td>
<td>5.5</td>
<td>1.75</td>
<td>8.0</td>
<td>3.1</td>
</tr>
<tr>
<td>Z</td>
<td>4.8</td>
<td>7.7</td>
<td>12.0</td>
<td>5.5</td>
<td>1.75</td>
<td>8.0</td>
<td>2.6</td>
</tr>
<tr>
<td>V</td>
<td>4.8</td>
<td>7.7</td>
<td>12.0</td>
<td>5.5</td>
<td>1.75</td>
<td>8.0</td>
<td>2.6</td>
</tr>
<tr>
<td>D</td>
<td>4.8</td>
<td>7.7</td>
<td>12.0</td>
<td>5.5</td>
<td>1.75</td>
<td>8.0</td>
<td>3.4</td>
</tr>
</tbody>
</table>

Note
- A reel diameter of 330 mm is also applicable
LEADFRAMELESS MOLDED CAPACITORS, ALL TYPES

PLASTIC TAPE AND REEL PACKAGING in inches [millimeters]

Notes
- Metric dimensions will govern. Dimensions in inches are rounded and for reference only

1. A_0, B_0, K_0, are determined by the maximum dimensions to the ends of the terminals extending from the component body and / or the body dimensions of the component. The clearance between the ends of the terminals or body of the component to the sides and depth of the cavity (A_0, B_0, K_0) must be within 0.002” (0.05 mm) minimum and 0.020” (0.50 mm) maximum. The clearance allowed must also prevent rotation of the component within the cavity of not more than 20°

2. Tape with components shall pass around radius “R” without damage. The minimum trailer length may require additional length to provide “R” minimum for 12 mm embossed tape for reels with hub diameters approaching N minimum

3. This dimension is the flat area from the edge of the sprocket hole to either outward deformation of the carrier tape between the embossed cavities or to the edge of the carrier whichever is less

4. This dimension is the flat area from the edge of the carrier tape opposite the sprocket holes to either the outward deformation of the carrier tape between the embossed cavity or to the edge of the cavity whichever is less

5. The embossed hole location shall be measured from the sprocket hole controlling the location of the embossment. Dimensions of embossment location shall be applied independent of each other

6. B_1 dimension is a reference dimension tape feeder clearance only

Tape and Reel Specifications: all case sizes are available on plastic embossed tape per EIA-481. Standard reel diameter is 7” [178 mm].
CARRIER TAPE DIMENSIONS in inches [millimeters]

<table>
<thead>
<tr>
<th>CASE CODE</th>
<th>TAPE SIZE</th>
<th>B₀ (MAX.) (1)</th>
<th>D₀ (MIN.)</th>
<th>F₀</th>
<th>K₀ (MAX.)</th>
<th>P₁</th>
<th>W₀</th>
</tr>
</thead>
<tbody>
<tr>
<td>E5</td>
<td>12 mm</td>
<td>0.329 [8.35]</td>
<td>0.059 [1.5]</td>
<td>0.217 ± 0.002 [5.50 ± 0.05]</td>
<td>0.071 [1.8]</td>
<td>0.315 ± 0.004 [8.0 ± 0.10]</td>
<td>0.476 ± 0.008 [12.1 ± 0.20]</td>
</tr>
<tr>
<td>MM (2)</td>
<td>8 mm</td>
<td>0.075 [1.91]</td>
<td>0.02 [0.5]</td>
<td>0.138 [3.5]</td>
<td>0.043 [1.10]</td>
<td>0.157 [4.0]</td>
<td>0.315 [8.0]</td>
</tr>
<tr>
<td>M1</td>
<td>12 mm</td>
<td>0.32 [8.2]</td>
<td>0.059 [1.5]</td>
<td>0.217 ± 0.002 [5.5 ± 0.05]</td>
<td>0.094 [2.39]</td>
<td>0.315 ± 0.004 [8.0 ± 1.0]</td>
<td>0.472 ± 0.012 / - 0.004 [12.0 ± 0.03 / - 0.10]</td>
</tr>
<tr>
<td>W9</td>
<td>8 mm</td>
<td>0.126 [3.20]</td>
<td>0.030 [0.75]</td>
<td>0.138 [3.5]</td>
<td>0.045 [1.15]</td>
<td>0.157 [4.0]</td>
<td>0.315 [8.0]</td>
</tr>
<tr>
<td>W0</td>
<td>8 mm</td>
<td>0.126 [3.20]</td>
<td>0.030 [0.75]</td>
<td>0.138 [3.5]</td>
<td>0.045 [1.15]</td>
<td>0.157 [4.0]</td>
<td>0.315 [8.0]</td>
</tr>
<tr>
<td>A0</td>
<td>8 mm</td>
<td>-</td>
<td>0.02 [0.5]</td>
<td>0.138 [3.5]</td>
<td>0.049 [1.25]</td>
<td>0.157 [4.0]</td>
<td>0.315 [8.0]</td>
</tr>
<tr>
<td>AA</td>
<td>8 mm</td>
<td>0.154 [3.90]</td>
<td>0.039 [1.0]</td>
<td>0.138 [3.5]</td>
<td>0.079 [2.00]</td>
<td>0.157 [4.0]</td>
<td>0.315 [8.0]</td>
</tr>
<tr>
<td>B0</td>
<td>12 mm</td>
<td>0.181 [4.61]</td>
<td>0.059 [1.5]</td>
<td>0.217 [5.5]</td>
<td>0.049 [1.25]</td>
<td>0.157 [4.0]</td>
<td>0.315 [8.0]</td>
</tr>
<tr>
<td>BB</td>
<td>8 mm</td>
<td>0.157 [4.0]</td>
<td>0.039 [1.0]</td>
<td>0.138 [3.5]</td>
<td>0.087 [2.22]</td>
<td>0.157 [4.0]</td>
<td>0.315 [8.0]</td>
</tr>
<tr>
<td>EE</td>
<td>12 mm</td>
<td>0.32 [8.2]</td>
<td>0.059 [1.5]</td>
<td>0.217 ± 0.002 [5.5 ± 0.05]</td>
<td>0.175 [4.44]</td>
<td>0.315 ± 0.04 [8.0 ± 1.0]</td>
<td>0.472 ± 0.012 / - 0.004 [12.0 ± 0.03 / - 0.10]</td>
</tr>
</tbody>
</table>

Notes
(1) For reference only
(2) Standard packaging of MM case is with paper tape. Plastic tape is available per request

PAPER TAPE AND REEL PACKAGING DIMENSIONS in inches [millimeters]

USER FEED DIRECTION

<table>
<thead>
<tr>
<th>CASE SIZE</th>
<th>TAPE SIZE</th>
<th>A₀</th>
<th>B₀</th>
<th>D₀</th>
<th>P₀</th>
<th>P₁</th>
<th>P₂</th>
<th>E</th>
<th>F</th>
<th>W</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>8 mm</td>
<td>0.041 ± 0.002 [1.05 ± 0.05]</td>
<td>0.071 ± 0.002 [1.8 ± 0.05]</td>
<td>0.06 ± 0.004 [1.5 ± 0.1]</td>
<td>0.157 ± 0.004 [4.0 ± 0.1]</td>
<td>0.157 ± 0.004 [4.0 ± 0.1]</td>
<td>0.079 ± 0.002 [2.0 ± 0.05]</td>
<td>0.069 ± 0.004 [1.75 ± 0.05]</td>
<td>0.0138 ± 0.002 [3.5 ± 0.05]</td>
<td>0.315 ± 0.008 [8.0 ± 0.2]</td>
<td>0.037 ± 0.002 [0.95 ± 0.05]</td>
</tr>
<tr>
<td>M0</td>
<td>8 mm</td>
<td>0.049 ± 0.002 [1.25 ± 0.05]</td>
<td>0.081 ± 0.002 [2.05 ± 0.05]</td>
<td>0.06 ± 0.004 [1.5 ± 0.1]</td>
<td>0.157 ± 0.004 [4.0 ± 0.1]</td>
<td>0.157 ± 0.004 [4.0 ± 0.1]</td>
<td>0.079 ± 0.002 [2.0 ± 0.05]</td>
<td>0.069 ± 0.004 [1.75 ± 0.05]</td>
<td>0.0138 ± 0.002 [3.5 ± 0.05]</td>
<td>0.315 ± 0.008 [8.0 ± 0.2]</td>
<td>0.041 ± 0.002 [1.05 ± 0.05]</td>
</tr>
</tbody>
</table>

Note
(1) A₀, B₀ are determined by the maximum dimensions to the ends of the terminals extending from the component body and / or the body dimensions of the component. The clearance between the ends of the terminals or body of the component to the sides and depth of the cavity (A₀, B₀) must be within 0.002" (0.05 mm) minimum and 0.020" (0.50 mm) maximum. The clearance allowed must also prevent rotation of the component within the cavity of not more than 20°.
PACKING AND STORAGE
Polymer capacitors meet moisture sensitivity level rating (MSL) of 3 or 4 as specified in IPC/JEDEC® J-STD-020 and are dry packaged in moisture barrier bags (MBB) per J-STD-033. MSL for each particular family is defined in the datasheet - either in "Features" section or "Standard Ratings" table. Level 3 specifies a floor life (out of bag) of 168 hours and level 4 specifies a floor life of 72 hours at 30 °C maximum and 60 % relative humidity (RH). Unused capacitors should be re-sealed in the MBB with fresh desiccant. A moisture strip (humidity indicator card) is included in the bag to assure dryness. To remove excess moisture, capacitors can be dried at 40 °C (standard "dry box" conditions).
For detailed recommendations please refer to J-STD-033.

RECOMMENDED REFLOW PROFILES
Vishay recommends no more than 3 cycles of reflow in accordance with J-STD-020.

```
<table>
<thead>
<tr>
<th>PROFILE FEATURE</th>
<th>SnPb EUTECTIC ASSEMBLY</th>
<th>LEAD (Pb)-FREE ASSEMBLY</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>PREHEAT AND SOAK</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature min. (T_{Smin.})</td>
<td>100 °C</td>
<td>150 °C</td>
</tr>
<tr>
<td>Temperature max. (T_{Smax.})</td>
<td>150 °C</td>
<td>200 °C</td>
</tr>
<tr>
<td>Time (t_S) from (T_{Smin.} to T_{Smax.})</td>
<td>60 s to 120 s</td>
<td>60 s to 120 s</td>
</tr>
<tr>
<td><strong>RAMP UP</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ramp-up rate (T_L to T_P)</td>
<td>3 °C/s maximum</td>
<td></td>
</tr>
<tr>
<td>Liquidus temperature (T_L)</td>
<td>183 °C</td>
<td>217 °C</td>
</tr>
<tr>
<td>Time (t_L) maintained above T_L</td>
<td>60 s to 150 s</td>
<td></td>
</tr>
<tr>
<td>Peak package body temperature (T_p) max.</td>
<td>Depends on type and case - see table below</td>
<td></td>
</tr>
<tr>
<td>Time (t_p) within 5 °C of the peak max. temperature</td>
<td>20 s</td>
<td>5 s</td>
</tr>
<tr>
<td><strong>RAMP DOWN</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ramp-down rate (T_P to T_L)</td>
<td>6 °C/s maximum</td>
<td></td>
</tr>
<tr>
<td>Time from 25 °C to peak temperature</td>
<td>6 min maximum</td>
<td>8 min maximum</td>
</tr>
</tbody>
</table>
```

PEAK PACKAGE BODY TEMPERATURE (T_p) MAXIMUM

```
<table>
<thead>
<tr>
<th>TYPE</th>
<th>CASE CODE</th>
<th>SnPb EUTECTIC ASSEMBLY</th>
<th>LEAD (Pb)-FREE ASSEMBLY</th>
</tr>
</thead>
<tbody>
<tr>
<td>T52</td>
<td>E5, M1</td>
<td>260 °C</td>
<td></td>
</tr>
<tr>
<td>T58</td>
<td>MM, M0, W9, W0, A0, AA, B0, BB</td>
<td>260 °C</td>
<td></td>
</tr>
<tr>
<td>T50</td>
<td>D</td>
<td>260 °C</td>
<td></td>
</tr>
<tr>
<td>T56</td>
<td>D</td>
<td>260 °C</td>
<td></td>
</tr>
<tr>
<td>T59</td>
<td>EE</td>
<td>220 °C</td>
<td>250 °C</td>
</tr>
<tr>
<td>T54</td>
<td>EE</td>
<td>220 °C</td>
<td>250 °C</td>
</tr>
</tbody>
</table>
```

Notes
- T50, T52, T55, T56, and T58 capacitors are process sensitive.
- PSL classification to JEDEC J-STD-075: R4G
- T54 and T59 capacitors with 100 % tin termination are process sensitive.
- PSL classification to JEDEC J-STD-075: R6G

Revision: 17-Mar-2020
Document Number: 40076

For technical questions, contact: polytech@vishay.com
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE, THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
MOLDED CAPACITORS, T50 / T55 / T56 TYPES

PAD DIMENSIONS in millimeters

<table>
<thead>
<tr>
<th>CASE / DIMENSIONS</th>
<th>CAPACITOR SIZE</th>
<th>PAD DIMENSIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L</td>
<td>W</td>
</tr>
<tr>
<td>J</td>
<td>1.6</td>
<td>0.8</td>
</tr>
<tr>
<td>P</td>
<td>2.0</td>
<td>1.25</td>
</tr>
<tr>
<td>A</td>
<td>3.2</td>
<td>1.6</td>
</tr>
<tr>
<td>T / B</td>
<td>3.5</td>
<td>2.8</td>
</tr>
<tr>
<td>C</td>
<td>5.8</td>
<td>3.2</td>
</tr>
<tr>
<td>Z / V / D</td>
<td>7.3</td>
<td>4.3</td>
</tr>
</tbody>
</table>

LEADFRAMELESS MOLDED CAPACITORS, ALL TYPES

PAD DIMENSIONS in inches [millimeters]

<table>
<thead>
<tr>
<th>FAMILY</th>
<th>CASE CODE</th>
<th>A (NOM.)</th>
<th>B (MIN.)</th>
<th>C (NOM.)</th>
<th>D (MIN.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T52</td>
<td>E5</td>
<td>0.094 [2.40]</td>
<td>0.073 [1.85]</td>
<td>0.187 [4.75]</td>
<td>0.333 [8.45]</td>
</tr>
<tr>
<td></td>
<td>M1</td>
<td>0.161 [4.10]</td>
<td>0.073 [1.85]</td>
<td>0.187 [4.75]</td>
<td>0.333 [8.45]</td>
</tr>
<tr>
<td>T58</td>
<td>MM, M0</td>
<td>0.024 [0.61]</td>
<td>0.027 [0.70]</td>
<td>0.025 [0.64]</td>
<td>0.080 [2.03]</td>
</tr>
<tr>
<td></td>
<td>W0, W9</td>
<td>0.035 [0.89]</td>
<td>0.029 [0.74]</td>
<td>0.041 [1.05]</td>
<td>0.099 [2.52]</td>
</tr>
<tr>
<td></td>
<td>AA, A0, A2</td>
<td>0.047 [1.19]</td>
<td>0.042 [1.06]</td>
<td>0.065 [1.65]</td>
<td>0.148 [3.76]</td>
</tr>
<tr>
<td></td>
<td>BB, B0</td>
<td>0.094 [2.39]</td>
<td>0.044 [1.11]</td>
<td>0.072 [1.82]</td>
<td>0.159 [4.03]</td>
</tr>
<tr>
<td>T59 / T54</td>
<td>EE</td>
<td>0.209 [5.30]</td>
<td>0.098 [2.50]</td>
<td>0.169 [4.30]</td>
<td>0.366 [9.30]</td>
</tr>
</tbody>
</table>
GUIDE TO APPLICATION

1. **AC Ripple Current**: the maximum allowable ripple current shall be determined from the formula:

 \[I_{\text{RMS}} = \sqrt{\frac{P}{R_{\text{ESR}}}} \]

 where,

 \(P \) = power dissipation in W at +45 °C as given in the tables in the product datasheets.

 \(R_{\text{ESR}} \) = the capacitor equivalent series resistance at the specified frequency.

2. **AC Ripple Voltage**: the maximum allowable ripple voltage shall be determined from the formula:

 \[V_{\text{RMS}} = Z \sqrt{\frac{P}{R_{\text{ESR}}}} \]

 or, from the formula:

 \[V_{\text{RMS}} = I_{\text{RMS}} \times Z \]

 where,

 \(P \) = power dissipation in W at +45 °C as given in the tables in the product datasheets.

 \(R_{\text{ESR}} \) = The capacitor equivalent series resistance at the specified frequency.

 \(Z \) = The capacitor impedance at the specified frequency.

2.1 The tantalum capacitors must be used in such a condition that the sum of the working voltage and ripple voltage peak values does not exceed the rated voltage as shown in figure below.

3. **Temperature Derating**: power dissipation is affected by the heat sinking capability of the mounting surface. If these capacitors are to be operated at temperatures above +45 °C, the permissible ripple current (or voltage) shall be calculated using the derating coefficient as shown in the table below:

 | MAXIMUM RIPPLE CURRENT TEMPERATURE DERATING FACTOR |
 |-----------------|-----------------|
 | ≤ 45 °C | 1.0 |
 | 55 °C | 0.8 |
 | 85 °C | 0.6 |
 | 105 °C | 0.4 |
 | 125 °C | 0.25 |

4. **Reverse Voltage**: the capacitors are not intended for use with reverse voltage applied. However, they are capable of withstanding momentary reverse voltage peaks, which must not exceed the following values:

 - At 25 °C: 10 % of the rated voltage or 1 V, whichever is smaller.
 - At 85 °C: 5 % of the rated voltage or 0.5 V, whichever is smaller.
 - At 105 °C: 3 % of the rated voltage or 0.3 V, whichever is smaller.

5. **Mounting Precautions**:

5.1 **Soldering**: capacitors can be attached by conventional soldering techniques; vapor phase, convection reflow, infrared reflow, wave soldering, and hot plate methods. The soldering profile charts show recommended time / temperature conditions for soldering. Preheating is recommended. The recommended maximum ramp rate is 2 °C per s. Attachment with a soldering iron is not recommended due to the difficulty of controlling temperature and time at temperature. The soldering iron must never come in contact with the capacitor. For details see www.vishay.com/doc?40214.

5.2 **Limit Pressure on Capacitor Installation with Mounter**: pressure must not exceed 4.9 N with a tool end diameter of 1.5 mm when applied to the capacitors using an absorber, centering tweezers, or similar (maximum permitted pressurization time: 5 s). An excessively low absorber setting position would result in not only the application of undue force to the capacitors but capacitor and other component scattering, circuit board wiring breakage, and / or cracking as well, particularly when the capacitors are mounted together with other chips having a height of 1 mm or less.

5.3 **Flux Selection**

5.3.1 Select a flux that contains a minimum of chlorine and amine.

5.3.2 After flux use, the chlorine and amine in the flux remain must be removed.

5.4 **Cleaning After Mounting**: the following solvents are usable when cleaning the capacitors after mounting. Never use a highly active solvent.

 - Halogen organic solvent (HCFC225, etc.)
 - Alcoholic solvent (IPA, ethanol, etc.)
 - Petroleum solvent, alkali saponifying agent, water, etc.

 Circuit board cleaning must be conducted at a temperature of not higher than 50 °C and for an immersion time of not longer than 30 minutes. When an ultrasonic cleaning method is used, cleaning must be conducted at a frequency of 48 kHz or lower, at an vibrator output of 0.02 W/cm³, at a temperature of not higher than 40 °C, and for a time of 5 minutes or shorter.

Notes

- Care must be exercised in cleaning process so that the mounted capacitor will not come into contact with any cleaned object or the like or will not get rubbed by a stiff brush or similar. If such precautions are not taken particularly when the ultrasonic cleaning method is employed, terminal breakage may occur
- When performing ultrasonic cleaning under conditions other than stated above, conduct adequate advance checkout