Solid Tantalum Surface Mount Chip Capacitors
TANTAMOUNT™ Molded Case, HI-TMP®
High Temperature 175 °C, Automotive Grade

FEATURES
- Operating temperature up to 175 °C with 50 % voltage derating
- AEC-Q200 qualified
- 100 % surge current tested
- RoHS-compliant terminations available: matte tin (all cases), gold (D case)
- Standard EIA 535BAAC case sizes
- Moisture sensitivity level 1
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

APPLICATIONS
- Automotive
- Industrial
- High temperature

PERFORMANCE / ELECTRICAL CHARACTERISTICS
www.vishay.com/doc?40215

Operating Temperature: -55 °C to +175 °C
Capacitance Range: 10 μF to 100 μF
Capacitance Tolerance: ± 10 %, ± 20 %
Voltage Range: 6.3 VDC to 35 VDC

Note
- For recommended voltage derating guidelines see “Typical Performance Characteristics”

ORDERING INFORMATION

<table>
<thead>
<tr>
<th>TH4 TYPE</th>
<th>C CASE CODE</th>
<th>226 CAPACITANCE</th>
<th>K CAPACITANCE TOLERANCE</th>
<th>016 DC VOLTAGE RATING AT +85 °C</th>
<th>C TERMINATION AND PACKAGING</th>
<th>1000 ESR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>K = ± 10 %</td>
<td>M = ± 20 %</td>
<td>Matte tin</td>
<td>Maximum</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100 kHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ESR</td>
</tr>
</tbody>
</table>

Note
- We reserve the right to supply higher voltage ratings and tighter capacitance tolerance capacitors in the same case size. Voltage substitutions will be marked with the higher voltage rating
- Dry pack as specified in J-STD-033
DIMENSIONS in inches [millimeters]

<table>
<thead>
<tr>
<th>CASE CODE</th>
<th>EIA SIZE</th>
<th>L</th>
<th>W</th>
<th>H</th>
<th>P</th>
<th>TW</th>
<th>TH (MIN.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>3528-21</td>
<td>0.138 ± 0.008 [3.5 ± 0.20]</td>
<td>0.110 ± 0.008 [2.8 ± 0.20]</td>
<td>0.075 ± 0.008 [1.9 ± 0.20]</td>
<td>0.031 ± 0.012 [0.80 ± 0.30]</td>
<td>0.087 ± 0.004 [2.2 ± 0.10]</td>
<td>0.028 [0.70]</td>
</tr>
<tr>
<td>C</td>
<td>6032-28</td>
<td>0.236 ± 0.012 [6.0 ± 0.30]</td>
<td>0.126 ± 0.012 [3.2 ± 0.30]</td>
<td>0.098 ± 0.012 [2.5 ± 0.30]</td>
<td>0.051 ± 0.012 [1.3 ± 0.30]</td>
<td>0.087 ± 0.004 [2.2 ± 0.10]</td>
<td>0.039 [1.0]</td>
</tr>
<tr>
<td>D</td>
<td>7343-31</td>
<td>0.287 ± 0.012 [7.3 ± 0.30]</td>
<td>0.169 ± 0.012 [4.3 ± 0.30]</td>
<td>0.110 ± 0.012 [2.8 ± 0.30]</td>
<td>0.051 ± 0.012 [1.3 ± 0.30]</td>
<td>0.094 ± 0.004 [2.4 ± 0.10]</td>
<td>0.039 [1.0]</td>
</tr>
<tr>
<td>E</td>
<td>7343-43</td>
<td>0.287 ± 0.012 [7.3 ± 0.30]</td>
<td>0.169 ± 0.012 [4.3 ± 0.30]</td>
<td>0.157 ± 0.012 [4.0 ± 0.30]</td>
<td>0.051 ± 0.012 [1.3 ± 0.30]</td>
<td>0.094 ± 0.004 [2.4 ± 0.10]</td>
<td>0.039 [1.0]</td>
</tr>
</tbody>
</table>

Note
- Glue pad (non-conductive, part of molded case) is dedicated for glue attachment (as user option)

RATINGS AND CASE CODES

<table>
<thead>
<tr>
<th>μF</th>
<th>6.3 V</th>
<th>10 V</th>
<th>16 V</th>
<th>35 V</th>
<th>50 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>B (1.8)</td>
<td>B (1.8)</td>
<td>B (2.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>B (1.5)</td>
<td>B (1.6) C (1.4)</td>
<td>B (1.9) C (1.4, 1.0) D (0.8, 0.6)</td>
<td>D (0.5)</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>C (0.8)</td>
<td>C (0.5)</td>
<td>C (0.8) D (0.4, 0.7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td>E (0.6)</td>
<td></td>
</tr>
</tbody>
</table>

MARKING

Indicates 175 °C temperature
Capacitance, μF
Voltage
Polarity band (+)
Date code
Vishay marking

Marking
Capacitor marking includes an anode (+) polarity band, capacitance in microfarads and the voltage rating.
The Vishay identification marking is included if space permits. Vishay marking ("circled 2") may show additives in the form of short lines, depicting actual manufacturing facility. For A case capacitors discontinuation in polarity bar maybe used as actual manufacturing facility designation. Capacitors rated at 6.3 V are marked 6 V.
A manufacturing date code is marked on all capacitors.
Call the factory for further explanation.
STANDARD RATINGS

<table>
<thead>
<tr>
<th>CAPACITANCE (μF)</th>
<th>CASE CODE</th>
<th>PART NUMBER</th>
<th>MAX. DCL AT +25 °C (μA)</th>
<th>MAX. DF AT +25 °C 120 Hz (%)</th>
<th>MAX. ESR AT +25 °C 100 kHz (Ω)</th>
<th>MAX. RIPPLE AT +25 °C 100 kHz lRMS (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>6.3 VDC AT +85 °C; 3 VDC AT +175 °C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>B</td>
<td>TH4B106(1)6R3(2)1800</td>
<td>0.6</td>
<td>6.0</td>
<td>1.800</td>
<td>0.22</td>
</tr>
<tr>
<td>22</td>
<td>B</td>
<td>TH4B226(1)6R3(2)1500</td>
<td>1.4</td>
<td>6.0</td>
<td>1.500</td>
<td>0.24</td>
</tr>
<tr>
<td>47</td>
<td>C</td>
<td>TH4C476(1)6R3(2)0800</td>
<td>3.0</td>
<td>6.0</td>
<td>0.800</td>
<td>0.37</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10 VDC AT +85 °C; 5 VDC AT +175 °C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>B</td>
<td>TH4B106(1)10(2)1800</td>
<td>1.0</td>
<td>4.5</td>
<td>1.800</td>
<td>0.22</td>
</tr>
<tr>
<td>22</td>
<td>B</td>
<td>TH4B226(1)10(2)1600</td>
<td>2.2</td>
<td>6.0</td>
<td>1.600</td>
<td>0.23</td>
</tr>
<tr>
<td>22</td>
<td>C</td>
<td>TH4C226(1)10(2)1400</td>
<td>2.2</td>
<td>6.0</td>
<td>1.400</td>
<td>0.28</td>
</tr>
<tr>
<td>47</td>
<td>C</td>
<td>TH4C476(1)10(2)0500</td>
<td>4.7</td>
<td>4.5</td>
<td>0.500</td>
<td>0.47</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>16 VDC AT +85 °C; 8 VDC AT +175 °C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>B</td>
<td>TH4B106(1)16(2)2000</td>
<td>1.6</td>
<td>6.0</td>
<td>2.000</td>
<td>0.21</td>
</tr>
<tr>
<td>22</td>
<td>B</td>
<td>TH4B226(1)16(2)1900</td>
<td>3.5</td>
<td>6.0</td>
<td>1.900</td>
<td>0.21</td>
</tr>
<tr>
<td>22</td>
<td>C</td>
<td>TH4C226(1)16(2)1400</td>
<td>3.5</td>
<td>6.0</td>
<td>1.400</td>
<td>0.28</td>
</tr>
<tr>
<td>22</td>
<td>C</td>
<td>TH4C226(1)16(2)1000</td>
<td>3.5</td>
<td>6.0</td>
<td>1.000</td>
<td>0.33</td>
</tr>
<tr>
<td>22</td>
<td>D</td>
<td>TH4D226(1)16(2)0800</td>
<td>3.5</td>
<td>6.0</td>
<td>0.800</td>
<td>0.43</td>
</tr>
<tr>
<td>22</td>
<td>D</td>
<td>TH4D226(1)16(2)0600</td>
<td>3.5</td>
<td>6.0</td>
<td>0.600</td>
<td>0.50</td>
</tr>
<tr>
<td>47</td>
<td>C</td>
<td>TH4C476(1)16(2)0800</td>
<td>7.5</td>
<td>6.0</td>
<td>0.800</td>
<td>0.37</td>
</tr>
<tr>
<td>47</td>
<td>D</td>
<td>TH4D476(1)16(2)0700</td>
<td>7.5</td>
<td>6.0</td>
<td>0.700</td>
<td>0.46</td>
</tr>
<tr>
<td>47</td>
<td>D</td>
<td>TH4D476(1)16(2)0400</td>
<td>7.5</td>
<td>6.0</td>
<td>0.400</td>
<td>0.61</td>
</tr>
<tr>
<td>100</td>
<td>E</td>
<td>TH4E107(1)16(2)0600</td>
<td>16</td>
<td>8.0</td>
<td>0.600</td>
<td>0.52</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>35 VDC AT +85 °C; 17.5 VDC AT +175 °C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>D</td>
<td>TH4D226(1)35(2)0500</td>
<td>6.0</td>
<td>6.0</td>
<td>0.500</td>
<td>0.55</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>50 VDC AT +85 °C; 25 VDC AT +175 °C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.7</td>
<td>D</td>
<td>TH4D475(1)05(2)0900</td>
<td>2.4</td>
<td>6.0</td>
<td>0.900</td>
<td>0.41</td>
</tr>
</tbody>
</table>

Note

- Part number definitions:
 1. Capacitance tolerance: K, M
 2. Termination and packaging: C, D, V, U

POWER DISSIPATION

<table>
<thead>
<tr>
<th>CASE CODE</th>
<th>MAXIMUM PERMISSIBLE POWER DISSIPATION AT +25 °C (W) IN FREE AIR</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>0.085</td>
</tr>
<tr>
<td>C</td>
<td>0.110</td>
</tr>
<tr>
<td>D</td>
<td>0.150</td>
</tr>
<tr>
<td>E</td>
<td>0.165</td>
</tr>
</tbody>
</table>
Ripple Current Factor

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>Derating Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>1.0</td>
</tr>
<tr>
<td>85</td>
<td>0.9</td>
</tr>
<tr>
<td>125</td>
<td>0.4</td>
</tr>
<tr>
<td>150</td>
<td>0.3</td>
</tr>
<tr>
<td>175</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Standard Packaging Quantity

<table>
<thead>
<tr>
<th>Case Code</th>
<th>Units Per Reel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7" Reel</td>
</tr>
<tr>
<td>B</td>
<td>2000</td>
</tr>
<tr>
<td>C</td>
<td>500</td>
</tr>
<tr>
<td>D</td>
<td>500</td>
</tr>
<tr>
<td>E</td>
<td>400</td>
</tr>
</tbody>
</table>

Product Information

- Packaging Dimensions
- Moisture Sensitivity (MSL)
INTRODUCTION

Tantalum electrolytic capacitors are the preferred choice in applications where volumetric efficiency, stable electrical parameters, high reliability, and long service life are primary considerations. The stability and resistance to elevated temperatures of the tantalum / tantalum oxide / manganese dioxide system make solid tantalum capacitors an appropriate choice for today's surface mount assembly technology.

Vishay Sprague has been a pioneer and leader in this field, producing a large variety of tantalum capacitor types for consumer, industrial, automotive, military, and aerospace electronic applications. Tantalum is not found in its pure state. Rather, it is commonly found in a number of oxide minerals, often in combination with Columbium ore. This combination is known as “tantalite” when its contents are more than one-half tantalum. Important sources of tantalite include Australia, Brazil, Canada, China, and several African countries. Synthetic tantalite concentrates produced from tin slags in Thailand, Malaysia, and Brazil are also a significant raw material for tantalum production.

Electronic applications, and particularly capacitors, consume the largest share of world tantalum production. Other important applications for tantalum include cutting tools (tantalum carbide), high temperature super alloys, chemical processing equipment, medical implants, and military ordinance.

Vishay Sprague is a major user of tantalum materials in the form of powder and wire for capacitor elements and rod and sheet for high temperature vacuum processing.

THE BASICS OF TANTALUM CAPACITORS

Most metals form crystalline oxides which are non-protecting, such as rust on iron or black oxide on copper. A few metals form dense, stable, tightly adhering, electrically insulating oxides. These are the so-called "valve"metals and include titanium, zirconium, niobium, tantalum, hafnium, and aluminum. Only a few of these permit the accurate control of oxide thickness by electrochemical means. Of these, the most valuable for the electronics industry are aluminum and tantalum.

Capacitors are basic to all kinds of electrical equipment, from radios and television sets to missile controls and automobile ignition. Their function is to store an electrical charge for later use.

Capacitors consist of two conducting surfaces, usually metal plates, whose function is to conduct electricity. They are separated by an insulating material or dielectric. The dielectric used in all tantalum electrolytic capacitors is tantalum pentoxide.

Tantalum pentoxide compound possesses high-dielectric strength and a high-dielectric constant. As capacitors are being manufactured, a film of tantalum pentoxide is applied to their electrodes by means of an electrolytic process. The film is applied in various thicknesses and at various voltages and although transparent to begin with, it takes on different colors as light refracts through it. This coloring occurs on the tantalum electrodes of all types of tantalum capacitors. Rating for rating, tantalum capacitors tend to have as much as three times better capacitance / volume efficiency than aluminum electrolytic capacitors. An approximation of the capacitance / volume efficiency of other types of capacitors may be inferred from the following table, which shows the dielectric constant ranges of the various materials used in each type. Note that tantalum pentoxide has a dielectric constant of 26, some three times greater than that of aluminum oxide. This, in addition to the fact that extremely thin films can be deposited during the electrolytic process mentioned earlier, makes the tantalum capacitor extremely efficient with respect to the number of microfarads available per unit volume. The capacitance of any capacitor is determined by the surface area of the two conducting plates, the distance between the plates, and the dielectric constant of the insulating material between the plates.

In the tantalum electrolytic capacitor, the distance between the plates is very small since it is only the thickness of the tantalum pentoxide film. As the dielectric constant of the tantalum pentoxide is high, the capacitance of a tantalum capacitor is high if the area of the plates is large:

\[C = \frac{eA}{t} \]

where

- \(C \) = capacitance
- \(e \) = dielectric constant
- \(A \) = surface area of the dielectric
- \(t \) = thickness of the dielectric

Tantalum capacitors contain either liquid or solid electrolytes. In solid electrolyte capacitors, a dry material (manganese dioxide) forms the cathode plate. A tantalum lead is embedded in or welded to the pellet, which is in turn connected to a termination or lead wire. The drawings show the construction details of the surface mount types of tantalum capacitors shown in this catalog.

COMPARISON OF CAPACITOR DIELECTRIC CONSTANTS

<table>
<thead>
<tr>
<th>DIELECTRIC</th>
<th>DIELECTRIC CONSTANT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air or vacuum</td>
<td>1.0</td>
</tr>
<tr>
<td>Paper</td>
<td>2.0 to 6.0</td>
</tr>
<tr>
<td>Plastic</td>
<td>2.1 to 6.0</td>
</tr>
<tr>
<td>Mineral oil</td>
<td>2.2 to 2.3</td>
</tr>
<tr>
<td>Silicone oil</td>
<td>2.7 to 2.8</td>
</tr>
<tr>
<td>Quartz</td>
<td>3.8 to 4.4</td>
</tr>
<tr>
<td>Glass</td>
<td>4.8 to 8.0</td>
</tr>
<tr>
<td>Porcelain</td>
<td>5.1 to 5.9</td>
</tr>
<tr>
<td>Mica</td>
<td>5.4 to 8.7</td>
</tr>
<tr>
<td>Aluminum oxide</td>
<td>8.4</td>
</tr>
<tr>
<td>Tantalum pentoxide</td>
<td>26</td>
</tr>
<tr>
<td>Ceramic</td>
<td>12 to 400K</td>
</tr>
</tbody>
</table>

For technical questions, contact: tantalum@vishay.com

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
SOLID ELECTROLYTE TANTALUM CAPACITORS

Solid electrolyte capacitors contain manganese dioxide, which is formed on the tantalum pentoxide dielectric layer by impregnating the pellet with a solution of manganous nitrate. The pellet is then heated in an oven, and the manganous nitrate is converted to manganese dioxide. The pellet is next coated with graphite, followed by a layer of metallic silver, which provides a conductive surface between the pellet and the leadframe.

Molded Chip tantalum capacitor encases the element in plastic resins, such as epoxy materials. After assembly, the capacitors are tested and inspected to assure long life and reliability. It offers excellent reliability and high stability for consumer and commercial electronics with the added feature of low cost.

Surface mount designs of “Solid Tantalum” capacitors use lead frames or lead frameless designs as shown in the accompanying drawings.

TANTALUM CAPACITORS FOR ALL DESIGN CONSIDERATIONS

Solid electrolyte designs are the least expensive for a given rating and are used in many applications where their very small size for a given unit of capacitance is of importance. They will typically withstand up to about 10% of the rated DC working voltage in a reverse direction. Also important are their good low temperature performance characteristics and freedom from corrosive electrolytes.

Vishay Sprague patented the original solid electrolyte capacitors and was the first to market them in 1956. Vishay Sprague has the broadest line of tantalum capacitors and has continued its position of leadership in this field. Data sheets covering the various types and styles of Vishay Sprague capacitors for consumer and entertainment electronics, industry, and military applications are available where detailed performance characteristics must be specified.
Commercial Products

Solid Tantalum Capacitors - Molded Case

<table>
<thead>
<tr>
<th>Series</th>
<th>293D</th>
<th>793DX-CTC3-CTC4</th>
<th>593D</th>
<th>TR3</th>
<th>TP3</th>
<th>TL3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product Image</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Standard, industrial grade</td>
<td>CECC approved</td>
<td>Low ESR</td>
<td>Low ESR</td>
<td>High performance, automotive grade</td>
<td>Very low DCL</td>
</tr>
<tr>
<td>Temperature Range</td>
<td>-55 °C to +125 °C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capacitance Range</td>
<td>0.1 μF to 1000 μF</td>
<td>0.1 μF to 100 μF</td>
<td>1 μF to 470 μF</td>
<td>0.47 μF to 1000 μF</td>
<td>0.1 μF to 470 μF</td>
<td>0.1 μF to 470 μF</td>
</tr>
<tr>
<td>Voltage Range</td>
<td>4 V to 75 V</td>
<td>4 V to 50 V</td>
<td>4 V to 50 V</td>
<td>4 V to 75 V</td>
<td>4 V to 50 V</td>
<td>4 V to 50 V</td>
</tr>
<tr>
<td>Capacitance Tolerance</td>
<td>± 10 %, ± 20 %</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leakage Current</td>
<td>0.01 CV or 0.5 μA, whichever is greater</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dissipation Factor</td>
<td>4 % to 30 %</td>
<td>4 % to 6 %</td>
<td>4 % to 15 %</td>
<td>4 % to 30 %</td>
<td>4 % to 15 %</td>
<td>4 % to 15 %</td>
</tr>
<tr>
<td>Case Codes</td>
<td>A, B, C, D, E</td>
<td>A, B, C, D</td>
<td>A, B, C, D, E, W</td>
<td>A, B, C, D, E</td>
<td>A, B, C, D, E</td>
<td></td>
</tr>
<tr>
<td>Termination</td>
<td>100 % matte tin standard, tin / lead available</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Solid Tantalum Capacitors - Molded Case

<table>
<thead>
<tr>
<th>Series</th>
<th>TH3</th>
<th>TH4</th>
<th>TH5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product Image</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Surface mount TANamount™, molded case</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Features</td>
<td>High temperature +150 °C, automotive grade</td>
<td>High temperature +175 °C, automotive grade</td>
<td>Very high temperature +200 °C</td>
</tr>
<tr>
<td>Temperature Range</td>
<td>-55 °C to +150 °C</td>
<td>-55 °C to +175 °C</td>
<td>-55 °C to +200 °C</td>
</tr>
<tr>
<td>Capacitance Range</td>
<td>0.33 μF to 220 μF</td>
<td>10 μF to 100 μF</td>
<td>4.7 μF to 100 μF</td>
</tr>
<tr>
<td>Voltage Range</td>
<td>6.3 V to 50 V</td>
<td>6.3 V to 35 V</td>
<td>5 V to 24 V</td>
</tr>
<tr>
<td>Capacitance Tolerance</td>
<td>± 10 %, ± 20 %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leakage Current</td>
<td>0.01 CV or 0.5 μA, whichever is greater</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dissipation Factor</td>
<td>4 % to 8 %</td>
<td>4.5 % to 8 %</td>
<td>6 % to 10 %</td>
</tr>
<tr>
<td>Case Codes</td>
<td>A, B, C, D, E</td>
<td>B, C, D, E</td>
<td>D, E</td>
</tr>
<tr>
<td>Termination</td>
<td>100 % matte tin standard, tin / lead and gold plated available</td>
<td>100 % matte tin</td>
<td>Gold plated</td>
</tr>
</tbody>
</table>
High Reliability Products

Solid Tantalum Capacitors - Molded Case

<table>
<thead>
<tr>
<th>Series</th>
<th>TM3</th>
<th>T83</th>
<th>CWR11</th>
<th>95158</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product Image</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>TANTAMOUNT™, molded case, hi-rel.</td>
<td>TANTAMOUNT™, molded case, hi-rel. COTS</td>
<td>TANTAMOUNT™, molded case, DLA approved</td>
<td></td>
</tr>
<tr>
<td>Features</td>
<td>High reliability, for medical Instruments</td>
<td>High reliability, standard and low ESR</td>
<td>MIL-PRF-55365/8 qualified</td>
<td>Low ESR</td>
</tr>
<tr>
<td>Temperature Range</td>
<td>-55 °C to +125 °C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capacitance Range</td>
<td>1 μF to 220 μF</td>
<td>0.1 μF to 470 μF</td>
<td>0.1 μF to 100 μF</td>
<td>4.7 μF to 220 μF</td>
</tr>
<tr>
<td>Voltage Range</td>
<td>4 V to 20 V</td>
<td>4 V to 63 V</td>
<td>4 V to 50 V</td>
<td></td>
</tr>
<tr>
<td>Capacitance Tolerance</td>
<td>± 10 %, ± 20 %</td>
<td>± 5 %, ± 10 %, ± 20 %</td>
<td>± 10 %, ± 20 %</td>
<td></td>
</tr>
<tr>
<td>Leakage Current</td>
<td>0.005 CV or 0.25 μA, whichever is greater</td>
<td>0.01 CV or 0.5 μA, whichever is greater</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dissipation Factor</td>
<td>4 % to 8 %</td>
<td>4 % to 15 %</td>
<td>4 % to 6 %</td>
<td>4 % to 12 %</td>
</tr>
<tr>
<td>Case Codes</td>
<td>A, B, C, D, E</td>
<td>A, B, C, D, E</td>
<td>A, B, C, D</td>
<td>C, D, E</td>
</tr>
<tr>
<td>Termination</td>
<td>100 % matte tin; tin / lead</td>
<td>100 % matte tin; tin / lead; tin / lead solder fused</td>
<td>Tin / lead; tin / lead solder fused</td>
<td>Tin / lead solder plated; gold plated</td>
</tr>
</tbody>
</table>
Notes

- Metric dimensions will govern. Dimensions in inches are rounded and for reference only.

1. A0, B0, K0, are determined by the maximum dimensions to the ends of the terminals extending from the component body and / or the body dimensions of the component. The clearance between the ends of the terminals or body of the component to the sides and depth of the cavity (A0, B0, K0) must be within 0.002" (0.05 mm) minimum and 0.020" (0.50 mm) maximum. The clearance allowed must also prevent rotation of the component within the cavity of not more than 20°

2. Tape with components shall pass around radius “R” without damage. The minimum trailer length may require additional length to provide “R” minimum for 12 mm embossed tape for reels with hub diameters approaching N minimum

3. This dimension is the flat area from the edge of the sprocket hole to either outward deformation of the carrier tape between the embossed cavities or to the edge of the cavity whichever is less

4. This dimension is the flat area from the edge of the carrier tape opposite the sprocket holes to either the outward deformation of the carrier tape between the embossed cavity or to the edge of the cavity whichever is less

5. The embossed hole location shall be measured from the sprocket hole controlling the location of the embossment. Dimensions of embossment location shall be applied independent of each other

6. B1 dimension is a reference dimension tape feeder clearance only

PLASTIC TAPE AND REEL PACKAGING

in inches [millimeters]

- **Deformation between embossments**
 - 0.059 ± 0.004 [1.5 ± 0.10]
 - 10 pitches cumulative tolerance on tape ± 0.008 [0.200]
 - 0.079 ± 0.002 [2.0 ± 0.05]

- **Embossment**
 - 0.069 ± 0.004 [1.75 ± 0.10]

- **Tape thickness**
 - 0.014 [0.35] MAX.

- **B1, MAX.** (Note 6)

- **K0**

- **Top cover tape**

- **Top cover tape**

- **Center lines of cavity**

- **USER DIRECTION OF FEED**

- **Maximum cavity size** (Note 1)

- **D1, MIN. for components**
 - 0.079 x 0.047 [2.0 x 1.2] and larger.

- **(Note 5)**

- **Embossment**

- **Direction of Feed**

- **Cathode (-)**

- **Anode (+)**

Tape and Reel Specifications:

- All case sizes are available on plastic embossed tape per EIA-481. Standard reel diameter is 7" [178 mm], 13" [330 mm] reels are available and recommended as the most cost effective packaging method.

- The most efficient packaging quantities are full reel increments on a given reel diameter. The quantities shown allow for the sealed empty pockets required to be in conformance with EIA-481. Reel size and packaging orientation must be specified in the Vishay Sprague part number.

<table>
<thead>
<tr>
<th>CASE CODE</th>
<th>TAPE SIZE</th>
<th>B1 (MAX.)</th>
<th>D1 (MIN.)</th>
<th>F</th>
<th>K0 (MAX.)</th>
<th>P1</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>8 mm</td>
<td>0.165</td>
<td>0.039</td>
<td>0.138 ± 0.002 [3.5 ± 0.05]</td>
<td>0.094</td>
<td>0.157 ± 0.004 [4.0 ± 1.0]</td>
<td>0.315 ± 0.012 [8.0 ± 0.30]</td>
</tr>
<tr>
<td>B</td>
<td>8 mm</td>
<td>0.156</td>
<td>0.039</td>
<td>0.128 ± 0.002 [3.1 ± 0.05]</td>
<td>0.094</td>
<td>0.157 ± 0.004 [4.0 ± 1.0]</td>
<td>0.315 ± 0.012 [8.0 ± 0.30]</td>
</tr>
<tr>
<td>C</td>
<td>12 mm</td>
<td>0.32</td>
<td>0.059</td>
<td>0.217 ± 0.00 [5.5 ± 0.05]</td>
<td>0.177</td>
<td>0.315 ± 0.004 [8.0 ± 1.0]</td>
<td>0.472 ± 0.012 [12.0 ± 0.30]</td>
</tr>
<tr>
<td>D</td>
<td>12 mm</td>
<td>0.32</td>
<td>0.059</td>
<td>0.217 ± 0.00 [5.5 ± 0.05]</td>
<td>0.177</td>
<td>0.315 ± 0.004 [8.0 ± 1.0]</td>
<td>0.472 ± 0.012 [12.0 ± 0.30]</td>
</tr>
<tr>
<td>E</td>
<td>12 mm</td>
<td>0.32</td>
<td>0.059</td>
<td>0.217 ± 0.00 [5.5 ± 0.05]</td>
<td>0.177</td>
<td>0.315 ± 0.004 [8.0 ± 1.0]</td>
<td>0.472 ± 0.012 [12.0 ± 0.30]</td>
</tr>
<tr>
<td>W</td>
<td>12 mm</td>
<td>0.32</td>
<td>0.059</td>
<td>0.217 ± 0.00 [5.5 ± 0.05]</td>
<td>0.177</td>
<td>0.315 ± 0.004 [8.0 ± 1.0]</td>
<td>0.472 ± 0.012 [12.0 ± 0.30]</td>
</tr>
</tbody>
</table>
RECOMMENDED REFLOW PROFILES

Capacitors should withstand reflow profile as per J-STD-020 standard, three cycles.

PROFILE FEATURE	SnPb EUTECTIC ASSEMBLY	LEAD (Pb)-FREE ASSEMBLY
Preheat / soak | | |
Temperature min. (Ts min.) | 100 °C | 150 °C
Temperature max. (Ts max.) | 150 °C | 200 °C
Time (t_s) from (Ts min. to Ts max.) | 60 s to 120 s | 60 s to 120 s
Ramp-up | | |
Ramp-up rate (T_L to T_P) | 3 °C/s max. | 3 °C/s max.
Liquidus temperature (T_L) | 183 °C | 217 °C
Time (t_L) maintained above T_L | 60 s to 150 s | 60 s to 150 s
Peak package body temperature (T_P) | Depends on case size - see table below | |
Time (t_P) within 5 °C of the specified classification temperature (T_C) | 20 s | 30 s
Time 25 °C to peak temperature | 6 min max. | 8 min max.
Ramp-down | | |
Ramp-down rate (T_P to T_L) | 6 °C/s max. | 6 °C/s max.

PEAK PACKAGE BODY TEMPERATURE (T_P)

CASE CODE | PEAK PACKAGE BODY TEMPERATURE (T_P)
--- | --- | ---
SnPb EUTECTIC PROCESS | LEAD (Pb)-FREE PROCESS
A, B, C | 235 °C | 260 °C
D, E, W | 220 °C | 250 °C

PAD DIMENSIONS in inches [millimeters]

CASE CODE	A (MIN.)	B (NOM.)	C (NOM.)	D (NOM.)
A | 0.071 [1.80] | 0.067 [1.70] | 0.053 [1.35] | 0.187 [4.75]
B | 0.118 [3.00] | 0.071 [1.80] | 0.065 [1.65] | 0.207 [5.25]
C | 0.118 [3.00] | 0.094 [2.40] | 0.118 [3.00] | 0.307 [7.80]
D | 0.157 [4.00] | 0.098 [2.50] | 0.150 [3.80] | 0.346 [8.80]
E | 0.157 [4.00] | 0.098 [2.50] | 0.150 [3.80] | 0.346 [8.80]
W | 0.185 [4.70] | 0.098 [2.50] | 0.150 [3.80] | 0.346 [8.80]
GUIDE TO APPLICATION

1. **AC Ripple Current**: the maximum allowable ripple current shall be determined from the formula:

 \[I_{\text{RMS}} = \frac{P}{\sqrt{R_{\text{ESR}}}} \]

 where,

 \(P \) = power dissipation in W at +25 °C as given in the tables in the product datasheets (Power Dissipation).

 \(R_{\text{ESR}} \) = the capacitor equivalent series resistance at the specified frequency.

2. **AC Ripple Voltage**: the maximum allowable ripple voltage shall be determined from the formula:

 \[V_{\text{RMS}} = I_{\text{RMS}} \times Z \]

 where,

 \(Z \) = the capacitor impedance at the specified frequency

 \(P \) = power dissipation in W at +25 °C as given in the tables in the product datasheets (Power Dissipation).

 \(R_{\text{ESR}} \) = the capacitor equivalent series resistance at the specified frequency.

3. **Reverse Voltage**: solid tantalum capacitors are not intended for use with reverse voltage applied. However, they have been shown to be capable of withstanding momentary reverse voltage peaks of up to 10 % of the DC working voltage at 25 °C.

4. **Temperature Derating**: if these capacitors are to be operated at temperatures above +25 °C, the permissible RMS ripple current shall be calculated using the derating factors as shown:

<table>
<thead>
<tr>
<th>TEMPERATURE (°C)</th>
<th>DERATING FACTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>+25</td>
<td>1.0</td>
</tr>
<tr>
<td>+85</td>
<td>0.9</td>
</tr>
<tr>
<td>+125</td>
<td>0.4</td>
</tr>
<tr>
<td>+150 (1)</td>
<td>0.3</td>
</tr>
<tr>
<td>+175 (1)</td>
<td>0.2</td>
</tr>
<tr>
<td>+200 (1)</td>
<td>0.1</td>
</tr>
</tbody>
</table>

 Note

 (1) Applicable for dedicated high temperature product series

5. **Power Dissipation**: power dissipation will be affected by the heat sinking capability of the mounting surface. Non-sinusoidal ripple current may produce heating effects which differ from those shown. It is important that the equivalent \(I_{\text{RMS}} \) value be established when calculating permissible operating levels. (Power dissipation calculated using +25 °C temperature rise).

6. **Printed Circuit Board Materials**: molded capacitors are compatible with commonly used printed circuit board materials (alumina substrates, FR4, FR5, G10, PTFE-fluorocarbon and porcelanized steel).

7. **Attachment**:

 7.1 **Solder Paste**: the recommended thickness of the solder paste after application is 0.007” ± 0.001” [0.178 mm ± 0.025 mm]. Care should be exercised in selecting the solder paste. The metal purity should be as high as practical. The flux (in the paste) must be active enough to remove the oxides formed on the metallization prior to the exposure to soldering heat. In practice this can be aided by extending the solder preheat time at temperatures below the liquidous state of the solder.

 7.2 **Soldering**: capacitors can be attached by conventional soldering techniques; vapor phase, convection reflow, infrared reflow, wave soldering, and hot plate methods. The soldering profile charts show recommended time / temperature conditions for soldering. Preheating is recommended. The recommended maximum ramp rate is 2 °C per s. Attachment with a soldering iron is not recommended due to the difficulty of controlling temperature and time at temperature. The soldering iron must never come in contact with the capacitor. For details see www.vishay.com/doc?40214.

 7.2.1 **Backward and Forward Compatibility**: capacitors with SnPb or 100 % tin termination finishes can be soldered using SnPb or lead (Pb)-free soldering processes.

8. **Cleaning (Flux Removal) After Soldering**: molded capacitors are compatible with all commonly used solvents such as TES, TMS, Prelete, Chloroethane, Terpene and aqueous cleaning media. However, CFC / ODS products are not used in the production of these devices and are not recommended. Solvents containing methylene chloride or other epoxy solvents should be avoided since these will attack the epoxy encapsulation material.

 8.1 **When using ultrasonic cleaning**, the board may resonate if the output power is too high. This vibration can cause cracking or a decrease in the adherence of the termination. DO NOT EXCEED 9W/l at 40 kHz for 2 min.

9. **Recommended Mounting Pad Geometries**: proper mounting pad geometries are essential for successful solder connections. These dimensions are highly process sensitive and should be designed to minimize component rework due to unacceptable solder joints. The dimensional configurations shown are the recommended pad geometries for both wave and reflow soldering techniques. These dimensions are intended to be a starting point for circuit board designers and may be fine tuned if necessary based upon the peculiarities of the soldering process and / or circuit board design.
ELECTRICAL PERFORMANCE CHARACTERISTICS

<table>
<thead>
<tr>
<th>ITEM</th>
<th>PERFORMANCE CHARACTERISTICS</th>
</tr>
</thead>
</table>
| Category temperature range | -55 °C to +85 °C (to +125 °C / +150 °C / +175 °C with voltage derating - refer to graph “Category Voltage vs. Temperature”)
(1) |
| Capacitance tolerance | ± 20 %, ± 10 %, tested via bridge method, at 25 °C, 120 Hz |
| Dissipation factor | Limits per Standard Ratings table. Tested via bridge method, at 25 °C, 120 Hz |
| ESR | Limits per Standard Ratings table. Tested via bridge method, at 25 °C, 100 kHz |
| Leakage current | After application of rated voltage applied to capacitors for 5 min using a steady source of power with 1 kΩ
resistor in series with the capacitor under test, leakage current at 25 °C is not more than 0.01 CV or 0.5 μA,
whichever is greater. Note that the leakage current varies with temperature and applied voltage. See graph
“Typical Leakage Current Temperature Factor” for the appropriate adjustment factor. |
| Capacitance change by temperature| +30 % max. (at +175 °C)
+20 % max. (at +125 °C and +150 °C)
+10 % max. (at +85 °C)
-10 % max. (at -55 °C) |
| Reverse voltage | Capacitors are capable of withstanding peak voltages in the reverse direction equal to:
10 % of the DC rating at +25 °C
5 % of the DC rating at +85 °C
1 % of the DC rating at +125 °C |
| Ripple current | For maximum ripple current values (at 25 °C) refer to relevant datasheet. If capacitors are to be used at
temperatures above +25 °C, the permissible RMS ripple current (or voltage) shall be calculated using the
derating factors:
1.0 at +25 °C
0.9 at +85 °C
0.4 at +125 °C
0.3 at +150 °C
0.2 at +175 °C |
| Maximum operating and surge voltages vs. temperature | **+85 °C** | **+125 °C** | **+150 °C / +175 °C** |
| RATED VOLTAGE (V) | SURGE VOLTAGE (V) | CATEGORY VOLTAGE (V) | SURGE VOLTAGE (V) | CATEGORY VOLTAGE (V) |
| 4 | 5.2
6.3 | 8
10 | 13
16 | 20
20 | 26
25 | 32
35 | 46
50 | 65
50 (2) | 60
63 | 75
75 (3) | 75 |
| | 2.7
4
7
10
13
17
23
33
33
42
50 | 3.4
5
8
12
16
20
28
40
40
50 | n/a
3
5
8
10
12.5
17.5
25
n/a
n/a |

Notes
- All information presented in this document reflects typical performance characteristics
- Series TH3 - up to 150 °C; TH4 - up to 175 °C
- Capacitance value 15 μF and higher
- For 293D and TR3 only
Notes

• For temperatures above +85 °C the same voltage derating ratio is recommended, but with respect to category voltage.
 Up to +85 °C: category voltage = rated voltage
 At +125 °C: category voltage = 2/3 of rated voltage
 At 150 °C / 175 °C: category voltage = 1/2 of rated voltage
• For more information about recommended voltage derating see: www.vishay.com/doc?40246

Note

• Below 85 °C category voltage is equal to rated voltage

TYPICAL LEAKAGE CURRENT FACTOR

Note

• At +25 °C, the leakage current shall not exceed the value listed in the Standard Ratings table.
 At +85 °C, the leakage current shall not exceed 10 times the value listed in the Standard Ratings table.
 At +125 °C, the leakage current shall not exceed 12 times the value listed in the Standard Ratings table.
 At +150 °C, the leakage current shall not exceed 15 times the value listed in the Standard Ratings table.
 At +175 °C, the leakage current shall not exceed 18 times the value listed in the Standard Ratings table
ENVIRONMENTAL PERFORMANCE CHARACTERISTICS

<table>
<thead>
<tr>
<th>ITEM</th>
<th>CONDITION</th>
<th>POST TEST PERFORMANCE</th>
</tr>
</thead>
</table>
| **High temperature exposure (storage)** | MIL-STD-202, method 108
1000 h, at maximum rated temperature, unpowered |
Capacitance change
Dissipation factor
Leakage current
ESR | Within ± 20 % of initial value
Initial specified limit
Initial specified limit
Initial specified limit |
| **Operational life test at +125 °C** | AEC-Q200
1000 h application 2/3 of rated voltage |
Capacitance change
Dissipation factor
Leakage current
ESR | Within ± 20 % of initial value
Initial specified limit
Initial specified limit
Initial specified limit |
| **Operational life test at +150 °C (for TH3) and at +175 °C (for TH4)** | AEC-Q200
1000 h application 1/2 of rated voltage |
Capacitance change
Dissipation factor
Leakage current
ESR | Within ± 20 % of initial value
Shall not exceed 3 times the initial limit
Shall not exceed 3 times the initial limit |
| **Surge voltage** | MIL-PRF-55365:
1000 successive test cycles at 85 °C of surge voltage (as specified in the table above), in series with a 33 Ω resistor at the rate of 30 s ON, 30 s OFF |
Capacitance change
Dissipation factor
Leakage current
ESR | Within ± 30 % of initial value
Shall not exceed 1.5 times the initial limit
Shall not exceed 1.5 times the initial limit |
| **Biased humidity test** | AEC-Q200
At 85 °C / 85 % RH, 1000 h, with rated voltage applied |
Capacitance change
Dissipation factor
Leakage current
ESR | Within ± 20 % of initial value
Shall not exceed 3 times the initial limit
Shall not exceed 3 times the initial limit |
| **Temperature cycling** | AEC-Q200 / JESD22, method JA-104
-55 °C / +125 °C, for 1000 cycles |
Capacitance change
Dissipation factor
Leakage current
ESR | Within ± 20 % of initial value
Initial specified limit
Initial specified limit
Initial specified limit |

MECHANICAL PERFORMANCE CHARACTERISTICS

<table>
<thead>
<tr>
<th>ITEM</th>
<th>CONDITION</th>
<th>POST TEST PERFORMANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vibration</td>
<td>MIL-STD-202, method 204: 10 Hz to 2000 Hz, 5 g peak for 20 min, 12 cycles each of 3 orientations (total 36 cycles), at rated voltage</td>
<td></td>
</tr>
</tbody>
</table>
Capacitance change
Dissipation factor
Leakage current
ESR | Within ± 20 % of initial value
Initial specified limit
Initial specified limit
There shall be no mechanical or visual damage to capacitors post-conditioning. |
| **Mechanical shock** | MIL-STD-202, method 213, condition F, 1500 g peak, 0.5 ms, half-sine |
Capacitance change
Dissipation factor
Leakage current
ESR | Within ± 20 % of initial value
Initial specified limit
Initial specified limit
There shall be no mechanical or visual damage to capacitors post-conditioning. |
| **Resistance to solder heat** | MIL-STD-202, method 210, condition D
Solder dip 260 °C ± 5 °C, 10 s |
Capacitance change
Dissipation factor
Leakage current
ESR | Within ± 20 % of initial value
Initial specified limit
Initial specified limit
There shall be no mechanical or visual damage to capacitors post-conditioning. |
| **Resistance to solvents** | MIL-STD-202, method 215 |
Capacitance change
Dissipation factor
Leakage current
ESR | Within ± 20 % of initial value
Initial specified limit
Initial specified limit
There shall be no mechanical or visual damage to capacitors post-conditioning. |
| **Solderability** | AEC-Q200 / J-STD-002 |
Electrical test not required |
| **Terminal strength / Shear force test** | AEC-Q200-006
Apply a pressure load of 17.7 N (1.8 kg) for 60 s horizontally to the center of capacitor side body.
Exception: for case size 0603 pressure load is 5N |
Part should not be sheared off the pads and no body cracking post-conditioning. Electrical test not required. |
| **Flammability** | Encapsulation materials meet UL 94 V-0 with an oxygen index of 32 % | n/a |
Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay’s knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer’s responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer’s technical experts. Product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.