## THE VISHAY **PASSIVES GALLERY**

Vishay Solutions Inside















### **PRODUCT LIST**

### **Semiconductors**

- MOSFETs
- ICs
- Rectifiers
- Small-Signal Diodes
- Protection Diodes
- Thyristors / SCRs
- Power Modules
- Optoelectronics

### **Passive Components**

- Resistors
- Magnetics
- Capacitors

## MARKET AND TECHNOLOGY LEADER

### **Semiconductors**

- Low-Voltage Power MOSFETs
- Power Rectifiers
- Infrared Components
- TVS Avalanche Breakdown Diodes

### **Passive Components**

- Thin Film SMD Resistors
- Power Inductors and Custom Magnetics
- Wirewound and Other Power Resistors
- Wet and Conformal-Coated Tantalum Capacitors
- Capacitors for Power Electronics
- Leaded Film Resistors

Our Parts And Your Vision meet here

## **Table of Contents**



1-4 The Art of Capacitors



5-8 The Art of Resistors



9-10 The Art of Inductors



11-12 The Art of Thermistors



13-16 The Art of Specialty Passives



## The Art of Capacitors















































### **LEGEND**

- ☐ Thin Film
- Solid and Polymer Tantalum
- Aluminum
- Ceramic Single-Layer
- Wet Tantalum
- Heavy-Current Power Film (ESTA)
- Ceramic Multilayer
- Energy Storage





Polymer Termination Option



200 V to 5000 V 10 pF to 1.8 µF Open mode design Parts for reflow and conductive epoxy assembly

### SOURCE ENERGY

High Pulse Discharge Current



1000 V to 1500 V 4.7 nF to 560 nF 1812 to 4044

### CDC

Low Electrostrictive Ceramic



1000 V to 1500 V 33 nF to 560 nF Integrated 500 MΩ resistor

### BASIC COMMODITY

COG (NPO), X5R, X7R, Y5V



6.3 V to 100 V 0.5 pF to 100 μF 0402 to 1210

### 0201 and ARRAYS

COG (NPO), X5R, and X7R Dielectrics



6.3 V to 50 V and 16 V, 50 V 0.5 pF to 220 nF and 10 pF to 100 nF 4 capacitors in 0612 size

### TM3 – MEDICAL

High-Reliability, Weibull Grading Options



4 V<sub>DC</sub> to 20 V<sub>DC</sub> 1 µF to 220 µF Certified to medical standard ISO 13485

### TR3 - LOW ESR

100 % Surge Current Tested



4 V<sub>DC</sub> to 63 V<sub>DC</sub> 0.47 μF to 1000 μF Seven case codes

### TP3 – AUTOMOTIVE

AEC-Q200 Qualified



4 V<sub>DC</sub> to 50 V<sub>DC</sub> 0.10 μF to 470 μF Low ESR and 100 % surge current tested

### TH5 – HI-TMP

Application Voltage: 21 V / 24 V at +200 °C



21 V<sub>DC</sub>, 24 V<sub>DC</sub> 4.7 µF, 10 µF 500 h continuous operation

### TL3 - VERY LOW DC

DC Leakage at 0.005 CV



4 V to 50 V 0.1 μF to 470 μF Improved reliability: 0.50 %, 1000 h, 85 °C, rated voltage

### T83 – HI-REL COTS

High-Reliability



4 V<sub>DC</sub> to 63 V<sub>DC</sub> 0.1 µF to 470 µF Weibull grading and surge current test options

### TM8

Hi-Rel: Medical and Military Qualified Tantalum Capacitor



 $2\,V_{_{DC}}$  to  $40\,V_{_{DC}}$  0.68  $\mu F$  to 47  $\mu F$  Military and medical qualification

### TP8

Automotive: Compact AEC-Q200 Qualified Tantalum Capacitors



 $6~V_{_{DC}}$  to  $40~V_{_{DC}}$   $1.0~\mu F$  to  $100~\mu F$  Small sizes include 0603 footprint

### 97D

Industrial Grade: Robust Designs with Ultra-Low ESR



4 V<sub>DC</sub> to 75 V<sub>DC</sub> 10 μF to 1500 μF Designed for industrial and military use

### Г54

Military: High Reliability Polymer Capacitors



16 V<sub>DC</sub> to 75 V<sub>DC</sub> 10 μF to 470 μF High reliability

### T55

General Purpose: Industrial Grade Polymer Capacitors



2.5 V to 10 V 3.3 µF to 330 µF Molded body with lead frame terminations

### T58

MicroTan: Compact Polymer Capacitors



4 V<sub>DC</sub> to 25 V<sub>DC</sub> 10 μF to 330 μF Small size

### T59

High Energy: Maximum Capacitance and Voltage Polymer Capacitors



 $16\,V_{_{DC}}$  to  $75\,V_{_{DC}}$   $10~\mu F$  to  $470~\mu F$  High capacitance, high voltage

### HE5 / ED1

High-Energy Wet Tantalum Capacitor



25 V<sub>DC</sub> to 125 V<sub>DC</sub> 1100 μF to 72 000 μF Highest CV design

### 16 and T18

Enhanced Performance Wet Tantalum



 $25 \text{ V}_{DC}$  to  $125 \text{ V}_{DC}$   $10 \text{ }\mu\text{F}$  to  $1800 \text{ }\mu\text{F}$ High shock and vibration capable

### ST and ST

Extended Capacitance Wet Tantalum



10 V<sub>DC</sub> to 125 V<sub>DC</sub> 10 μF to 10 000 μF DLA drawings 93026 and 10004

### 134D and 13

+200 °C Tantalum Case Wet Tantalum



6 V<sub>DC</sub> to 125 V<sub>DC</sub>

### To

SMD Wet Tantalum Capacitor with Metal Case and Hermetic Sealing



50 V<sub>DC</sub> to 125 V<sub>DC</sub>

SMD Solid Tantalum Capacitor with Metal Case and Hermetic Sealing



16 V<sub>DC</sub> to 50 V<sub>DC</sub>



## The Art of Capacitors





### MKP1848S

Slim DC-Link: **Low Building Height** 



500 V<sub>DC</sub> to 1000 V<sub>DC</sub> 2 μF to 100 μF Building heights of 12 mm, 15 mm, 18 mm, 24 mm

**High-Performance** DC-Link



 $450~V_{_{DC}}$  to  $1200~V_{_{DC}}$  1  $\mu F$  to  $400~\mu F$  AEC-Q200 qualified DC-Link

Snubber for Direct **IGBT Mount** 



 $700\,V_{_{DC}}$  to  $2500\,V_{_{DC}}$   $0.047\,\mu F$  to  $10\,\mu F$  Multiple terminal configurations

**AC Filter with** Segmented Film



230 V<sub>AC</sub> to 440 V<sub>AC</sub> 1 µF to 70 µF Safe AC filtering for UPS systems

Pulse and High-**Frequency Capacitor** 



 $160~V_{_{DC}}$  to  $2500~V_{_{DC}}$   $0.00047~\mu F$  to  $82~\mu F$  High RMS current capabilities

**Axial AC and Pulse** Capacitor



 $630~V_{_{DC}}$  to  $1600~V_{_{DC}}$  0.1  $\mu F$  to 3.3  $\mu F$  High-current and high-frequency

RFI Across the Line X1



330 V<sub>AC</sub> 0.001 μF to 2.2 μF

**RFI Across the Line** X1



480 ν<sub>ες</sub> 0.001 μF to 1.0 μF

**RFI Across the Line** X2



310 V<sub>AC</sub> 0.01 μF to 2.2 μF

RFI Across the Line



**RFI Across the Line** X2 Axial



### MKP339X2

**RFI Across the Line** X2 AEC-0200



### MKP338 6 Y2

**RFI Across the Line** Y2 AEC-0200



 $300~\text{V}_{\text{AC}}$   $0.001~\mu\text{F}$  to  $0.47~\mu\text{F}$  Automotive Grade Y2 safety

AEC-Q200 DC Filter Automotive



**General Purpose DC Capacitor** 



 $50~V_{DC}$  to  $630~V_{DC}$  0.00068 µF to  $15~\mu$ F AEC-Q200 qualified

### MKT1813

**General Purpose Axial Capacitor** 



0.00047 µF to 22 µF Low building height applications

Precision Film, **Foil Capacitor** 



63 V<sub>DC</sub> to 630 V<sub>DC</sub> 100 pF to 22 nF High pulse capabilities

### MKP1839

**Precision Axial** Capacitor



160 V<sub>DC</sub> to 630 V<sub>DC</sub> 47 pF up to 22 μF Low building height application

### 142 RHS

Useful Life Up to 2500 h at 105 °C



10 V to 450 V uF to 22 000 uF

### 146 RTI / 246 RTI-V

Useful Life Up to 6000 h at 125 °C



68 μF to 6800 μF Low Z, AEC-Q200 qualified Vibration improved up to 50 g

### 160 RLA

Useful life up to 2000 h at 150 °C



33 μF to 3300 μF Low Z, AEC-Q200 qualified

### 152 RMH

Useful Life Up to 4000 h at 105 °C



.5 μF to 220 μF ligh-voltage, AEC-Q200 qualified

### 150 CRZ / 250 CRZ-V

Useful Life Up to 10 000 h at 105 °C



6.3 V to 100 V 4.7 μF to 10 000 μF ery low Z, AEC-Q200 qualified

### **LEGEND**

☐ Thin Film



Aluminum

- Ceramic Single-Layer
- Wet Tantalum
- Heavy-Current Power Film (ESTA)
- Ceramic Multilayer
- Energy Storage





Useful Life Up to 6000 h at 125 °C



16 V to 100 V 10 V to 100 V 10 µF to 4700 µF Low Z, AEC-Q200 qualified Vibration improved up to 30 g

### 160 CLA / 260 CLA-V

Useful Life Up to 2000 h at 150 °C



6 V to 80 V 17 μF to 3300 μF Low Z, AEC-Q200 qualified /ibration improved up to 30 g

Useful Life Up to 10 000 h at 105 °C



6.3 V to 100 V 2.2 μF to 15 000 μF High CV product

Useful Life Up to 8000 h at 125 °C



6.3 V to 200 V 4.7 μF to 10 000 μF High CV product

Useful Life Up to 8000 h at 125 °C



16 V to 100 V 47 µF to 6800 µF High ripple curren

4-Terminal Snap-In



350 V to 500 V 390 µF to 2700 µF Useful life ≥ 5000 h at 85 °C

### 157 PUM-SI

Useful Life of 5000 h at 85 °C



47 μF to 2200 μl stom designs available on reques

Useful Life Up to 5000 h at 105 °C



200 V to 500 V 66 µF to 1800 µF .ow ESR, high ripple current apability

### 101 / 102 PHR-ST

Useful Life Up to 15 000 h at 85 °C



25 V to 450 V 220 µF to 1 F igns available on reques

Useful Life Up to 5000 h at 105 °C



200 V to 450 V 150 μF to 33 000 μF

### 196 HVC ENYCAP™

**Energy Storage** Capacitor



1.4 V to 9.6 V 1.0 F to 90.0 F

**Energy Storage** Capacitor



15 F to 40 F High capacity and energy density

### LVAC PhMKP TUBULAR

Dry or Oil-Filled; IPOO, IP20; Low Height, Slim Diameter



Up to 1000 VAC  $_{\rm RMS}$  Up to 37 kvar and 3 x 219  $\mu F$  (star) LT > 150 000 h

### LVAC PHMKP TRI

50 kvar in Low-**Height Dry Design** 



Up to 1000 VAC  $_{\text{DMS}}$  Up to 56 kvar and 3 x 334  $\mu\text{F}$  (star) LT > 130 000 h, indoor / outdoor

### LVAC PhMKP RECT

Dry or Oil-Filled



Up to 1000 VAC  $_{\text{RMS}}$  Up to 450 kvar and 3 x 1700  $\mu\text{F}$  (star) LT > 150 000 h

### HVAC

One-Phase,



### HVAC

One-Phase,



### **HVAC**

Three-Phase, Three-Bushing



1 kV to 7.2 kV 50 kvar to 800 kvar

### PEC - DCMKP

Metallized PP, SH,



750 V<sub>DC</sub> to 10 kV<sub>D</sub> 50 µF to 20 mF

### PEC - HDMKP

Metallized PP, SH,



900 V<sub>ss</sub> to 2.7 kV

1 kV to 24 kV 50 kvar to 800 kvar

1 kV to 24 kV 50 kvar to 800 kvar



Capacitance



## The Art of Resistors

















































### **SERIES MAX. POWER RATINGS** \_\_\_ ≤ 0.5 W > 0.5 W up to 1 W > 1 W up to 10 W

> than 10 W

| E192 | (0.1, 0.25, 0.5) % |
|------|--------------------|
| E96  | 1 %                |
| E24  | (2, 5) %           |
| E12  | 10 %               |
|      |                    |

RESISTANCE **VALUES** 

| E192 | E96  | E192 | <b>E</b> 96 | E192 | <b>E</b> 96 |
|------|------|------|------|------|------|------|------|------|------|------|------|------|-------------|------|-------------|
| 10.0 | 10.0 | 11.5 | 11.5 | 13.3 | 13.3 | 15.4 | 15.4 | 17.8 | 17.8 | 20.5 | 20.5 | 23.7 | 23.7        | 27.4 | 27.4        |
| 10.1 |      | 11.7 |      | 13.5 |      | 15.6 |      | 18.0 |      | 20.8 |      | 24.0 |             | 27.7 |             |
| 10.2 | 10.2 | 11.8 | 11.8 | 13.7 | 13.7 | 15.8 | 15.8 | 18.2 | 18.2 | 21.0 | 21.0 | 24.3 | 24.3        | 28.0 | 28.0        |
| 10.4 |      | 12.0 |      | 13.8 |      | 16.0 |      | 18.4 |      | 21.3 |      | 24.6 |             | 28.4 |             |
| 10.5 | 10.5 | 12.1 | 12.1 | 14.0 | 14.0 | 16.2 | 16.2 | 18.7 | 18.7 | 21.5 | 21.5 | 24.9 | 24.9        | 28.7 | 28.7        |
| 10.6 |      | 12.3 |      | 14.2 |      | 16.4 |      | 18.9 |      | 21.8 |      | 25.2 |             | 29.1 |             |
| 10.7 | 10.7 | 12.4 | 12.4 | 14.3 | 14.3 | 16.5 | 16.5 | 19.1 | 19.1 | 22.1 | 22.1 | 25.5 | 25.5        | 29.4 | 29.4        |
| 10.9 |      | 12.6 |      | 14.5 |      | 16.7 |      | 19.3 |      | 22.3 |      | 25.8 |             | 29.8 |             |
| 11.0 | 11.0 | 12.7 | 12.7 | 14.7 | 14.7 | 16.9 | 16.9 | 19.6 | 19.6 | 22.6 | 22.6 | 26.1 | 26.1        | 30.1 | 30.1        |
| 11.1 |      | 12.9 |      | 14.9 |      | 17.2 |      | 19.8 |      | 22.9 |      | 26.4 |             | 30.5 |             |
| 11.3 | 11.3 | 13.0 | 13.0 | 15.0 | 15.0 | 17.4 | 17.4 | 20.0 | 20.0 | 23.2 | 23.2 | 26.7 | 26.7        | 30.9 | 30.9        |
| 11.4 |      | 13.2 |      | 15.2 |      | 17.6 |      | 20.3 |      | 23.4 |      | 27.1 |             | 31.2 |             |
|      | '    |      |      |      |      |      |      |      |      |      |      |      |             |      |             |
|      |      |      |      |      |      |      |      |      |      |      |      |      |             |      |             |





























RCL, RCA-LS





















| E192 | E96  | E192 | E96  | E192 | E96  | E192 | E96  | E192 | <b>E</b> 96 | E192 | E96  | E192 | E96  | E192 | E96  | E24 | E12 | E24 | E12 |
|------|------|------|------|------|------|------|------|------|-------------|------|------|------|------|------|------|-----|-----|-----|-----|
| 31.6 | 31.6 | 36.5 | 36.5 | 42.2 | 42.2 | 48.7 | 48.7 | 56.2 |             | 64.9 |      | 75.0 |      | 86.6 |      | 10  | 10  | 33  | 33  |
| 32.0 |      | 37.0 |      | 42.7 |      | 49.3 |      | 56.9 | 56.2        | 65.7 | 64.9 | 75.9 | 75.0 | 87.6 | 86.6 | 11  |     | 36  |     |
| 32.4 | 32.4 | 37.4 | 37.4 | 43.2 | 43.2 | 49.9 | 49.9 | 57.6 |             | 66.5 |      | 76.8 |      | 88.7 |      | 12  | 12  | 39  | 39  |
| 32.8 |      | 37.9 |      | 43.7 |      | 50.5 |      | 58.3 | 57.6        | 67.3 | 66.5 | 77.7 | 76.8 | 89.8 | 88.7 | 13  |     | 43  |     |
| 33.2 | 33.2 | 38.3 | 38.3 | 44.2 | 44.2 | 51.1 | 51.1 | 59.0 |             | 68.1 |      | 78.7 |      | 90.9 |      | 15  | 15  | 47  | 47  |
| 33.6 |      | 38.8 |      | 44.8 |      | 51.7 |      | 59.7 | 59.0        | 69.0 | 68.1 | 79.6 | 78.7 | 92.0 | 90.9 | 16  |     | 51  |     |
| 34.0 | 34.0 | 39.2 | 39.2 | 45.3 | 45.3 | 52.3 | 52.3 | 60.4 |             | 69.8 |      | 80.6 |      | 93.1 |      | 18  | 18  | 56  | 56  |
| 34.4 |      | 39.7 |      | 45.9 |      | 53.0 |      | 61.2 | 60.4        | 70.6 | 69.8 | 81.6 | 80.6 | 94.2 | 93.1 | 20  |     | 62  |     |
| 34.8 | 34.8 | 40.2 | 40.2 | 46.4 | 46.4 | 53.6 | 53.6 | 61.9 |             | 71.5 |      | 82.5 |      | 95.3 |      | 22  | 22  | 68  | 68  |
| 35.2 |      | 40.7 |      | 47.0 |      | 54.2 |      | 62.6 | 61.9        | 72.3 | 71.5 | 83.5 | 82.5 | 96.5 | 95.3 | 24  |     | 75  |     |
| 35.7 | 35.7 | 41.2 | 41.2 | 47.5 | 47.5 | 54.9 | 54.9 | 63.4 |             | 73.2 |      | 84.5 |      | 97.6 |      | 27  | 27  | 82  | 82  |
| 36.1 |      | 41.7 |      | 48.1 |      | 55.6 |      | 64.2 | 63.4        | 74.1 | 73.2 | 85.6 | 84.5 | 98.8 | 97.6 | 30  |     | 91  |     |



## The Art of Resistors

















































### SERIES MAX. **POWER RATINGS**



> 0.5 W up to 1 W

> 1 W up to 10 W

> than 10 W

| STANDARD   |
|------------|
| RESISTANCE |
| VALUES     |

E192 (0.1, 0.25, 0.5) % E96 1 %

E24 (2, 5) % 10 %

E12

| 10.0 | 10.0 | 11.5 | 11.5 | 13.3 | 13.3 | 15 |
|------|------|------|------|------|------|----|
| 10.1 |      | 11.7 |      | 13.5 |      | 15 |
| 10.2 | 10.2 | 11.8 | 11.8 | 13.7 | 13.7 | 15 |
| 10.4 |      | 12.0 |      | 13.8 |      | 16 |
| 10.5 | 10.5 | 12.1 | 12.1 | 14.0 | 14.0 | 16 |
| 10.6 |      | 12.3 |      | 14.2 |      | 16 |
| 10.7 | 10.7 | 12.4 | 12.4 | 14.3 | 14.3 | 16 |
| 10.9 |      | 12.6 |      | 14.5 |      | 16 |
| 11.0 | 11.0 | 12.7 | 12.7 | 14.7 | 14.7 | 16 |
| 11.1 |      | 12.9 |      | 14.9 |      | 17 |
| 11.3 | 11.3 | 13.0 | 13.0 | 15.0 | 15.0 | 17 |
| 11.4 |      | 13.2 |      | 15.2 |      | 17 |
|      |      |      |      |      |      |    |
|      |      |      |      |      |      |    |
|      |      |      |      |      |      |    |

| 2 | E96  | E192         | E96  |
|---|------|--------------|------|--------------|------|--------------|------|--------------|------|--------------|------|
|   | 13.3 | 15.4         | 15.4 | 17.8         | 17.8 | 20.5         | 20.5 | 23.7         | 23.7 | 27.4         | 27.4 |
|   | 13.7 | 15.6<br>15.8 | 15.8 | 18.0<br>18.2 | 18.2 | 20.8<br>21.0 | 21.0 | 24.0<br>24.3 | 24.3 | 27.7<br>28.0 | 28.0 |
|   | 14.0 | 16.0<br>16.2 | 16.2 | 18.4<br>18.7 | 18.7 | 21.3<br>21.5 | 21.5 | 24.6<br>24.9 | 24.9 | 28.4<br>28.7 | 28.7 |
|   | 14.3 | 16.4<br>16.5 | 16.5 | 18.9<br>19.1 | 19.1 | 21.8<br>22.1 | 22.1 | 25.2<br>25.5 | 25.5 | 29.1<br>29.4 | 29,4 |
|   | 14.7 | 16.7<br>16.9 | 16.9 | 19.3<br>19.6 | 19.6 | 22.3<br>22.6 | 22.6 | 25.8<br>26.1 | 26.1 | 29.8<br>30.1 | 30.1 |
|   |      | 17.2         |      | 19.8         |      | 22.9         |      | 26.4         |      | 30.5         |      |
|   | 15.0 | 17.4<br>17.6 | 17.4 | 20.0<br>20.3 | 20.0 | 23.2<br>23.4 | 23.2 | 26.7<br>27.1 | 26.7 | 30.9<br>31.2 | 30.9 |
|   |      |              |      |              |      |              |      |              |      |              |      |

















































| E192 | E96  | E24 | E12 | E24 | E12 |
|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|-----|-----|-----|-----|
| 31.6 | 31.6 | 36.5 | 36.5 | 42.2 | 42.2 | 48.7 | 48.7 | 56.2 |      | 64.9 |      | 75.0 |      | 86.6 |      | 10  | 10  | 33  | 33  |
| 32.0 |      | 37.0 |      | 42.7 |      | 49.3 |      | 56.9 | 56.2 | 65.7 | 64.9 | 75.9 | 75.0 | 87.6 | 86.6 | 11  |     | 36  |     |
| 32.4 | 32.4 | 37.4 | 37.4 | 43.2 | 43.2 | 49.9 | 49.9 | 57.6 |      | 66.5 |      | 76.8 |      | 88.7 |      | 12  | 12  | 39  | 39  |
| 32.8 |      | 37.9 |      | 43.7 |      | 50.5 |      | 58.3 | 57.6 | 67.3 | 66.5 | 77.7 | 76.8 | 89.8 | 88.7 | 13  |     | 43  |     |
| 33.2 | 33.2 | 38.3 | 38.3 | 44.2 | 44.2 | 51.1 | 51.1 | 59.0 |      | 68.1 |      | 78.7 |      | 90.9 |      | 15  | 15  | 47  | 47  |
| 33.6 |      | 38.8 |      | 44.8 |      | 51.7 |      | 59.7 | 59.0 | 69.0 | 68.1 | 79.6 | 78.7 | 92.0 | 90.9 | 16  |     | 51  |     |
| 34.0 | 34.0 | 39.2 | 39.2 | 45.3 | 45.3 | 52.3 | 52.3 | 60.4 |      | 69.8 |      | 80.6 |      | 93.1 |      | 18  | 18  | 56  | 56  |
| 34.4 |      | 39.7 |      | 45.9 |      | 53.0 |      | 61.2 | 60.4 | 70.6 | 69.8 | 81.6 | 80.6 | 94.2 | 93.1 | 20  |     | 62  |     |
| 34.8 | 34.8 | 40.2 | 40.2 | 46.4 | 46.4 | 53.6 | 53.6 | 61.9 |      | 71.5 |      | 82.5 |      | 95.3 |      | 22  | 22  | 68  | 68  |
| 35.2 |      | 40.7 |      | 47.0 |      | 54.2 |      | 62.6 | 61.9 | 72.3 | 71.5 | 83.5 | 82.5 | 96.5 | 95.3 | 24  |     | 75  |     |
| 35.7 | 35.7 | 41.2 | 41.2 | 47.5 | 47.5 | 54.9 | 54.9 | 63.4 |      | 73.2 |      | 84.5 |      | 97.6 |      | 27  | 27  | 82  | 82  |
| 36.1 |      | 41.7 |      | 48.1 |      | 55.6 |      | 64.2 | 63.4 | 74.1 | 73.2 | 85.6 | 84.5 | 98.8 | 97.6 | 30  |     | 91  |     |



## The Art of Inductors



Case sizes 1616 through 6767 Best saturation

# POWER INDUCTORS **IHLP-A1 Series**















































### **LEGEND**



High Frequency

- Multilayer ■ Wireless Charging
- Transformers
- Axial Leaded □ Filter Inductors
- Planar Transformers







Cockpit controls and backlight display Mobile communications systems Missile launch and guidance systems

### TRANSFORMERS

### Custom - Industrial



input / output inductors, filter inductors focus on complex designs for rugged environments Vinding construction includes: edgewound coils, planar coils, bob bobbin-wound coils, and toroidal

### TRANSFORMERS

Custom - Medical



Charging transformers Telemetry coils Custom inductors for implant market

### TRANSFORMERS

LPT Series



Toroidal designs available in three different core materials

### TRANSFORMERS





E-core transformers in gapped and ungapped configurations

### HIGH FREQUENCY IMC





Surface-mount molded inductor 0402 to 2220 case sizes

### HIGH FREQUENCY

IMC-01



mount wirewound inductors

### HIGH FREQUENCY

### IFCB



hin film chip inductor Fight tolerances Stable inductance over high frequencies

### **HIGH FREQUENCY**

ILC



Multilayer ceramic inductor High reliability

### HIGH FREQUENCY

ISC



inductors 1210 and 1812 case sizes



Surface-mount molded shielded

### PLANAR TRANSFORMER



Higher power density levels versus traditional planar designs Easily customized to meet design specific requirements
Full bridge / half bridge converter
applications from 150 W to 300 W

### MULTILAYER

ILSB



0603 / 0805 / 1206 case sizes High reliability Magnetically self shielded

### **MULTILAYER**

ILBB



Ferrite bead series 0402 to 1812 cases sizes Magnetically self shielded

### MULTILAYER

ILHB



High current ferrite bead series 0603 to 1812 case sizes Magnetically self shielded

### **MULTILAYER**

ILAS



into one package Minimal cross talk between adjacent circuits



Chip array ferrite bead Combines four single 0603 chips

### FILTER INDUCTORS





High current filter inductor Radial leaded
Designed for switching power supplies

### FILTER INDUCTORS

IHD / IHA



Printed circuit mounting (axial leads) Protected by polyolefin tubing Pre-tinned leads

### FILTER INDUCTORS

ΙH



High current filter inductor Radial leaded Pre-tinned leads

### FILTER INDUCTORS

IHB



High current filter inductor Radial leaded 6 sizes available, wide range of inductance values



Epoxy conformal coated, axial inductors Ferrite core Uniform roll coated

### WIRELESS CHARGING





6.3 µH and 24 µH values available Custom options available

### WIRELESS CHARGING







Custom options available

### WIRELESS CHARGING

IWAS-4832



options Custom options available

### WIRELESS CHARGING

IWAS-3827



10.7 µH for 5 W and 10 W applications stom options available



## The Art of Thermistors





Monolithic with Ni and Sn. One R<sub>25</sub>-value per case 0402, 0603, and 0805

### NTCS....E3.....T



Monolithic with Ni and Sn Glass protected -40 °C to +150 °C Tolerance on  $R_{25}$  down to 1 % Full range in 0402, 0603, and 0805 AEC-Q200 qualified

### NTCC200E4..., NTCC300E4...



Flat chip metallized (Ag or Au) Suitable for wire bonding -55 °C to +175 °C Resistant to thermal shocks and to leaching AEC-Q200 qualified

### NTCSMELFE3...



SOD-80 glass encapsulated Diameter down to 1.7 mm Response time down to 0.9 s For corrosive atmospheres and harsh environments

NTHS...



Wide resistance range Monolithic with Ni and Sn Design flexibility for temperature sensing and compensation 0402, 0603, 0805, and 1206



**NTC - LEADED** 

NTCLE400...



Special long lead sensors Accuracy over wide temperature High stability and excellent price / performance ratio

NTC - LEADED

NTCLE413..., NTCLE428...



Mini PVC insulated leads sattery sensor loccurate down to  $\pm$  0.3 °C small body of max. 3 mm for easy installation

### NTC - LEADED

NTCLG100E2...



SOD-27 glass encapsulated Temperature up to 200 °C
Diameter down to 1.8 mm
Response time down to 0.9 s For corrosive atmospheres and harsh environments

### NTC - LEADED

T, M, C

Small size final size fide resistance range vailable in different curves olerance on  $R_{25}$  down to 1 % recision down to  $\pm$  0.2 °C

### NTC - ASSEMBLIES NTCLP100...



Special long lead sensors ccuracy over wide temperature range High stability and excellent price / performance ratio



### NTC - ASSEMBLIES

NTCALUG91A...



Robust surface sensor -40 °C to +150 °C Easy mounting M4 Rugged construction PTFE insulated cable AEC-Q200 qualified

### NTC - ASSEMBLIES

NTCASCWE3...



Screw threaded sensors Easy mounting M4
Rugged construction
For surface temperature

### NTC - ASSEMBLIES

NTCACAP...



Refrigerator sensors Enabling class A+++
Very good water, moisture, and
ice resistance
Thermal cycle resistant

### NTC - ASSEMBLIES

NTCASRFE3C90406



Ice cube sensor FDA-grade housing Enabling class A+++
Very good water, moisture, and ice resistance
Thermal cycle resistant

### NTC - ASSEMBLIES

NTCAFLEX05...



Flex foil sensor for narrow space applications Response time down to 2 s Insulated and humidity resistant AEC-Q200 qualified

### NTC - ASSEMBLIES



Stainless steel immersion sensor Fast response time Reduced thermal gradient For permanent contact with liquids

PTCSL03...



Fast response time
Tolerance of ± 5 °C
Excellent long term behavior

PTCCL...D/E..



For overload protection 30 V to 60 V Small trip-hold ratio of 1.5 High maximum overload current

PTCCL...F..



For overload protection High maximum overload current

PTCCL...H/S/T/V..



For overload protection 265 V to 600 V Small trip-hold ratio of 1.5 High maximum overload current

PTCEL...



Inrush current limiting 440 V<sub>RMS</sub> to 560 V<sub>RMS</sub> (800 V<sub>DC</sub>) High energy absorption 150 J to 270 J

PTS....0... (PTS)



Platinum thin film chip Size 0603, 0805, and 1206 Lead (Pb)-free Short reaction times High accuracy and stability

### Negative Temperature Coefficient (NTC):

- NTC SMD (Surface-Mount Device)
- NTC Leaded (Through-Hole)
- NTC Assemblies

### Positive Temperature Coefficient (PTC):

- PTC SMD (Surface-Mount Device)
- PTC Assemblies
- PTC Leaded (Through-Hole)

### Thin Film - Resistance Temperature Detectors (RTD):

- RTD SMD (Surface-Mount Device)
- RTD Leaded (Through-Hole)

### **Voltage Dependent Resistors:**

- Varistors SMD (Surface-Mount Device)
- Varistors Leaded (Through-Hole)





Long and flexible leads for special mounting Fast response time of less than 0.5 s Small head diameter

### NTC - LEADED NTCLE203E3...

High accuracy
Tolerance down to 1 %
Stability over a long lifetime
Low heat conductivity
Thin nickel wires

## NTC - LEADED NTCLE203E3...SB0

2-point accurate sensor Tolerance down to 0.5 K -55 °C to +150 °C Stable, thermal shockwithstanding AEC-Q200 qualified



Long and flexible leads Small diameter Accuracy of ± 0.4 °C at 0 °C Designed for cold temperature applications



Miniature epoxy-ETFE insulated leads Fast reacting and accurate Exceptional withstanding to thermal shocks AEC-Q200 qualified





Robust surface sensor 150 °C long term stability Easy mounting M3 with 2.7 kV<sub>ac</sub> insulation voltage ETFE insulated 600 V<sub>ac</sub> rated AWG26 cable AEC-Q200 qualified





Robust surface sensor -40 °C to +150 °C Easy mounting M3 and M3.5 Rugged construction PTFE insulated cable AEC-Q200 qualified





Low thermal gradient surface sensor Tolerance on R<sub>25</sub> down to 1 % PEEK AWG30 nickel wires AEC-Q200 qualified



Miniature surface sensor Fast response time Low thermal mass Stud screw mounted M2 AEC-Q200 qualified



Miniature surface sensor Fast response time Low thermal mass Stud screw mounted M3 AEC-Q200 qualified







Surface temperature sensor with triangular shape housing Fast response time Mounted in a gauge or with a spring Extreme low thermal gradient

### PTC - SMD





Overload protection 30 V<sub>RMS</sub> to 300 V<sub>RMS</sub> operating Fast response time to overload Low heat transfer

### PTC - ASSEMBLIES



Over-temperature protection Wide range of well defined protection temperatures Excellent long term behavior

# The Varistor Gallery

### RTD - SMD

PTS....M... (PTS AT)



Platinum thin film chip High accuracy and stability Extended temperature range of -50 °C to +175 °C Short reaction times High thermal cycling capability AEC-Q200 qualified

### TD - SMD

TFPT...



Nickel thin film chip Wide resistance range Size 0603, 0805, and 1206 Tolerance on R<sub>25</sub> down to 0.5 % -55 °C to +150 °C High stability

### RTD - LEADED



Thin film linear thermistors Tolerance on  $R_{\rm 25}$  down to 1 % -55 °C to +150 °C High stability

### MD

MLV...

Multilayer surge suppressor Inherent bidirectional clamping 4 V<sub>RMS</sub> to 95 V<sub>RMS</sub> Excellent energy / volume ratio Sizes 0402 up to 2220

### LEADED

VDRS...



Standard surge  $14\,V_{\text{RMS}}$  to  $680\,V_{\text{RMS}}$   $I_{\text{surge}}$  up to  $6500\,\text{Å}$  (8/20  $\mu\text{s})$  Lead (Pb)-free and halogen-free



VDRH...



High surge 11 V<sub>RMS</sub> to 680 V<sub>RMS</sub> I<sub>surge</sub> up to 10 kA (8/20 µs) Lead (Pb)-free and halogen-free

## **The Art of Specialty Passives**



/erv fast ignition down to 50 us Surface-mount design for standard Active area according to customer specifications Case size 0603 (SMD version only)

### MEPIC



Firing energy down to 1.5 mJ Surface-mount design for standard assembly process active area according to customer e size 0805 (SMD version only)

### **POTENTIOMETERS**



2 million cycles Cermet element 12.5 mm square single turn panel control 4. 6. and 6.35 mm shaft diameters and 29 terminal styles Multiple assemblies - up to four modules

### **POTENTIOMETERS**



Version for military, professional and industrial applications (cermet): 1 W at 40 °C

PRV6



up to 1.5 W at 70 °C Military performance



CCTU 05-03B (PA1)

### **POTENTIOMETERS**

### PP22SA



(vibrations, shocks) High durability (25 M cycles)
Conductive plastic technology
Aeronautic, military, industrial
applications

### POTENTIOMETERS

### RP12



Conductive plastic potentiometer technology nfinite resolution

### **POTENTIOMETERS**

534



Bushing and servo mount designs available Special resistance tolerances to 1 %

### **POTENTIOMETERS**

502



Bushing mount and servo mount designs are available Large ohmic value range: 15 O to 100 kO

### **POTENTIOMETERS**

KIT LMF



Measurement range 25 mm to 1000 mm to + 0.025

### **POTENTIOMETERS**

ROT



Size 08 to 30 Linearity ± 1 % down to ± 0.015 %
Excellent repeatability
Long life

### **POTENTIOMETERS**

### 34THE



All electrical angles available up to: 3600° Accurate linearity down to ± 0.5 % Very long life: 50 M cycles for servo

### POTENTIOMETERS

### 981HE



asy mounting principle

### **POTENTIOMETERS**



12.5 mm square single turn panel ive shaft diameters and 29 terminal styles Multiple assemblies - up to seven Fests according to CECC 41000 or IEC 60393-1

### **POTENTIOMETERS**

### P16S



and industrial applications (cermet): 1 W at 40 °C ompact (integrated) Detent and electric cut off at beginning of travel Fully sealed and panel sealed

### **POTENTIOMETERS**





### **POTENTIOMETERS**





### **POTENTIOMETERS**

### **REC 115L**



Measurements range 25 mm to 1000 mm High accuracy ± 1 % down to ± 0.025 %

### **POTENTIOMETERS**

### **20 LHE**



Long life: greater than 10 M cycles

### **POTENTIOMETERS**





### SENSOR

### REC38L



12.5 mm to 150 mm

### **POTENTIOMETERS**

### Potentiometer



Linearity 2 % Big flexibility to adjust the number

### **POTENTIOMETERS**

### **Ultra Flat** Potentiometer



Technology membrane (waterproof) Aeronautic, industrial,

### **LEGEND**

- Igniters

Potentiometers and Trimmers

- Fuses
- Fuse Resistors
- Noise Suppressors
- Antennas
- Magnetics

Thermistors

- Varistors
- Temperature Sensors
- Tubular Heating
- Hybrids and Substrates











Clamp

(235 ± 15) °C 160 °C 24 V





































## **The Art of Specialty Passives**















































### **LEGEND**













































