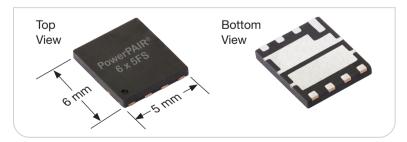


The DNA of tech."

SiZF640DT Symmetric Dual N-Channel 40 V MOSFET

Save Space While Simplifying PCB Layouts and Minimizing Parasitic Inductance


7

ADVANTAGE

In space-constrained applications, the SiZ640DT reduces PCB requirements by 50 % compared to discrete devices.

KEY PRODUCT FEATURES

- ✓ PowerPAIR® 6 x 5FS symmetric dual integrated package
- High side and low side MOSFETs form optimized combination for 50 % duty cycles
- ✓ Pin assignment matches layout concept
- ✓ Gate return for short loop and minimized parasitic inductance
- Maximum V_{IN} and GND pad for enhanced thermal dissipation
- √ 100 % R_a and UIS tested

MARKETS AND APPLICATIONS

INDUSTRIAL

 Half-bridge synchronous rectification in brushless DC motor drives, welding equipment, converters, robotics, power tools, and garden equipment

COMPUTER

 Half-bridge synchronous rectification in servers, embedded applications, edge computing, portable computers, tablets, and super computers; type C chargers

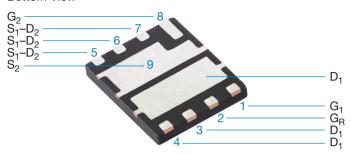
CONSUMER

 Half-bridge synchronous rectification in cleaning robots

CONNECTIVITY

 Half-bridge synchronous rectification in telecom mobile infrastructure, including radio base stations and PSUs

RESOURCES

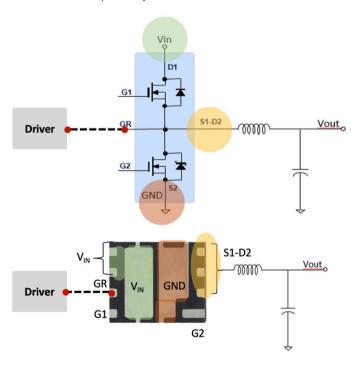


SiZF640DT Symmetric Dual N-Channel 40 V MOSFET

POWERPAIR® 6 × 5FS PIN ASSIGNMENTS

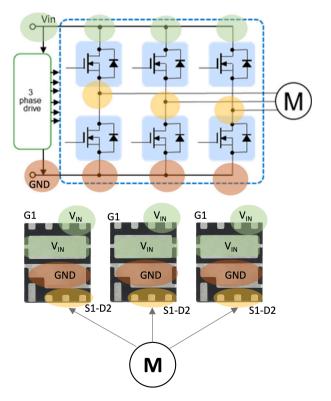
Pin assignments for the PowerPAIR 6 \times 5FS are designed to facilitate layouts and to minimize parasitic inductance by making the equivalent loop area covered by traces as small as possible.

Bottom View



SPECIFICATION TABLE

Part number	SiZ640DT
Package	PowerPAIR® 6 × 5FS
Configuration	Symmetric Dual N
V _{DS} (V)	40
V _{GS} (V)	+20 / –16
R _{DS(ON)} typ. @ 10 V (mΩ)	1.0
R _{DS(ON)} max. @ 10 V (mΩ)	1.37
R _{DS(ON)} typ. @ 4.5 V (mΩ)	1.6
R _{DS(ON)} max. @ 4.5 V (mΩ)	2.4
Q _g @ 10 V (nC)	69
Q _g @ 4.5 V (nC)	30
Q _{gs} (nC)	21
Q _{gd} (nC)	1.5
R _g typ. (Ω)	1.7


BUCK CONVERTER BLOCK DIAGRAM

- Optimal V_{IN} and GND pad
- Ultra short loop for switching
- Gate return simplifies layout

MOTOR DRIVE BLOCK DIAGRAM

- Optimal V_{IN} and GND pad
- Ultra short loop for switching

© 2023 VISHAY INTERTECHNOLOGY, INC. ALL RIGHTS RESERVED

www.vishay.com