

HIGH VOLTAGE MOLDED CHIP DIVIDER

CDMM

Molded Divider, High Voltage (Up to 1500 V), Surface-Mount

KEY BENEFITS

- AEC-Q200 qualified
- Up to 1500 V input voltage
- Compliant terminations
- High creepage distance
- Sulfur-resistant
- · Good TCR tracking and ratio tolerances compared to individual components
- Wide resistance range and ratios

APPLICATIONS

- Automotive: hybrid vehicles (HV) and electric vehicles
- Industrial: voltage dividers, voltage management, DC/DC converters

RESOURCES

- Datasheet: CDMM www.vishay.com/ppg?68041
- For technical questions contact <u>te1resistors@vishay.com</u>
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

HIGH VOLTAGE MOLDED CHIP DIVIDER

CDMM

Molded Divider, High Voltage (Up to 1500 V), Surface-Mount

Vishay Dale released a high voltage, SMT molded chip divider for automotive and industrial applications. The main features are listed below:

STANDARD ELECTRICAL SPECIFICATIONS											
GLOBAL MODEL	CASE SIZE	POWER RATING P _{70 °C} W	MAXIMUM WORKING VOLTAGE ⁽¹⁾ V	RESISTANCE RANGE R ₁	TOLERANCE ⁽³⁾ R ₁ ± %	RATIO RANGE (R ₁ + R ₂) / R ₂	RATIO TOL. ± %	TEMPERATURE COEFFICIENT ⁽⁴⁾ (-55 °C to +125 °C) ± ppm/°C	TCR TRACKING ± ppm/°C		
CDMM	4527	1.5	1500	500K to 50M ⁽²⁾	0.5, 1, 2, 5, 10	100:1 to 500:1	0.5, 1, 2, 5	100	10 - 50		

Notes

⁽¹⁾ Continuous working voltage shall be $\sqrt{P \times R}$ or maximum working voltage, whichever is less

 $^{(2)}$ Resistance value is calibrated at 100 V_{DC}

⁽³⁾ Contact factory for tighter tolerances

⁽⁴⁾ Reference only: Not for all values specified. Consult factory for your value

GLOBAL PART NUMBER INFORMATION New Global Part Numbering: CDMM20M0F2500FEF (preferred part number format) С D Μ Μ 2 0 Μ 0 F 2 5 0 0 F Е F GLOBAL RESISTANCE RATIO RATIO SOLDER TOLERANCE PACKAGING SPECIAL MODEL VALUE (R1) $(R_1 + R_2) / R_2$ TOLERANCE TERMINATION (see Standard $\pmb{\mathsf{K}}= \mathsf{k} \Omega$ $D = \pm 0.5 \%$ 3 digit $\mathbf{D} = \pm 0.5 \%$ **E** = Sn100 $\mathbf{B} = bulk$ Blank = Flectrical M = MO $\begin{array}{l} \textbf{F}=\pm 1 \ \% \\ \textbf{G}=\pm 2 \ \% \end{array}$ significant $\mathbf{F} = \pm 1 \%$ (250 pcs max.) **F** = T/R standard 525K = $G = \pm 2 \%$ Specifications figure, (dash number) 525 kΩ $J = \pm 5 \%$ followed by a $J = \pm 5 \%$ (1200 pcs) (up to 2 diaits) Global Model column for 1M50 = $K = \pm 10 \%$ multiplier 1 = T/Rfrom 1 to 99 options) 1.5 MΩ **2500** = 250:1 (1000 pcs) as applicable **3000** = 300:1 5 = T/R (500 pcs) $\mathbf{T} = \mathbf{T}/\mathbf{R}$ (250 pcs min.)

Notes

Contact factory for other ratios

VOLTAGE AND TEMPERATURE COEFFICIENTS OF RESISTANCE CHART (TYPICAL)										
GLOBAL MODEL	$\begin{array}{c} \textbf{RESISTANCE} \\ \Omega \end{array}$	RATIO (TYPICAL)	VCR ppm/V	RATIO TRACKING (-55 °C to +150 °C) ppm/°C						
	500K	100:1	-10	± 20						
CDMM	15M	250:1	-10	± 10						
	50M	500:1	-10	-50 to 0						

Note

· Contact factory for other ratios

© 2021 VISHAY INTERTECHNOLOGY, INC. ALL RIGHTS RESERVED.

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>