
Vishay Siliconix

8 A, 2.7 V to 23 V, 9.2 m Ω eFuse with Transient Over Current Blanking

DESCRIPTION

The SiP32435, SiP32436, and SiP32437 are single channel eFuses in compact 2 x 2mm package.

The family integrates multiple power management, circuit control, and protection features which provide robust defense against voltage surges, excessive inrush current, short circuit, overcurrent, and load dynamic.

The family provides increase controllability and reliability with simplified design, protect both power source and the downstream circuitry connected to the switch.

FEATURES

- 2.7 V to 23 V operation voltage
- 9.2 mΩ typical switch resistance
- Overvoltage protection
 - Overvoltage clamp with pin-selectable threshold and 5 μs response time or
- Settable overvoltage lockout with 1 µs response time
- Programmable output turn-on slew rate
- Adjustable UVLO through EN / UVLO pin
- Adjustable OVP
- ESD / HBM: > 2 kV
- ESD / CDM: > 500 V
- Status output
 - Fault indication or
 - Power Good with settable threshold (PGTH)
- Compact TDFN10 2 mm x 2 mm package
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

APPLICATIONS

- · Server, computer, and add-in cards
- Networking and data storage
- · Medical, healthcare, and patient monitoring devices
- Pad, table, and ebook

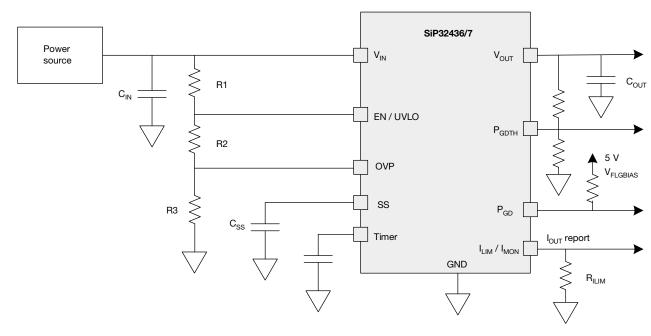


Fig. 1 - Application Circuit

1 For technical questions, contact: <u>powerictechsupport@vishay.com</u> Document Number: 61536

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishav.com/doc?91000

TYPICAL APPLICATION CIRCUIT

Vishay Siliconix

PACKAGE OUTLINE

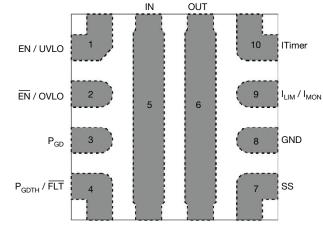


Fig. 2 - Pin Out Drawing (Top View) Pin 1 Dot Marking is on Top of the Device

PIN DE	PIN DESCRIPTION					
PIN #	NAME	FUNCTION				
1	EN / UVLO	Active high switch control input. V_{THL} < 0.3 V, V_{THH} > 1.2 V/Typ				
2	EN / OVLO (SiP32435x, SiP32437)	Input pin for setting the overvoltage switch off threshold. A resistor divider on this pin from IN to GND can be used for the setting. Connected it to GND if OVP feature isn't required. Don't leave floating				
L	OVCSEL (SiP32436x)	Input pin for selecting overvoltage clamp threshold. Please refer to " <u>SiP32436x OVCSEL PIN</u> <u>SETTING</u> " table for details.				
3	PG (SiP32436/7)	Open drain output. It is asserted high after a de-glitch time when the switch is fully on, and PGTH input voltage exceeds thresholds of related condition. It is de-asserted if PGTH voltage falls below its threshold, or a fault is detected except over current. Assertion and de-assertion have de-glitching time				
	DNC (SiP32435)	Left floating				
	PGTH (SiP32436/7)	Power good threshold feedback input pin				
4	/FLT (SiP32435)	An open drain output, active low fault event indicator. It is pulled low when a fault is detected				
5	IN	Power switch input pins. Two pins are fused inside the package				
6	OUT	Power switch output pins. Two pins are fused inside the package				
7	SS	A capacitor from this pin to GND sets output voltage slew rate				
8	GND	A resistor from this pin to GND sets the overload and short-circuit current limit. The pin can be used for current reporting, referring to the voltage developed over the current limit setting resistor				
9	I _{LIM} / I _{MON}	A resistor from this pin to GND sets the overload and short-circuit current limit. The pin can be used for current reporting, referring to the voltage developed over the current limit setting resistor				
10	ITimer	A capacitor from this pin to GND sets the overcurrent blanking interval during which the output current can temporarily exceed set current limit (but lower than fast-trip threshold) before the device overcurrent response takes action. Leave this pin open for the fastest response to overcurrent events. Refer to circuit-breaker or active current limiting for more details				

ORDERING INFORMATION						
PART NUMBER	OVP	OCP	FAULT OUTPUT	RESPONSE TO FAULT	MARKING	
SiP32435ADN-T5E3 (1)	Adjustable OVP		/FLT	Latch-off	AA	
SiP32435BDN-T5E3 (1)	Aujustable OVP	Active current		Auto-retry	AB	
SiP32436ADN-T5E3	Selectable over voltage	Selectable over voltage	clamping		Latch-off	AC
SiP32436BDN-T5E3	clamping (3.9 V, 5.8 V, 14 V)		PGD	Auto-retry	AD	
SiP32437ADN-T5E3	Adjustable OVP	Circuit breaker	_	Latch-off	AE	
SiP32437BDN-T5E3	Adjustable OVP	Circuit breaker		Auto-retry	AF	

Note

⁽¹⁾ In development. Contact Vishay for availability

S24-1303-Rev. A, 06-Jan-2025

www.vishay.com

Vishay Siliconix

DADAMETED			LINUT	
PARAMETER	CONDITION	LIMIT	UNIT	
Input voltage (V _{IN})	Reference to GND	-0.3 to +26.5	_	
Output voltage (V _{OUT})	Reference to GND (non-reverse blocking option)	-0.6 to (VIN +0.3)		
	V _{OUT} pulse, < 1 μs	-0.7 V		
EN voltage	Reference to GND	-0.3 to +6.5		
OVP	Reference to GND	-0.3 to +6.5	V	
SS		Internally limited	-	
ITIMER		Internally limited		
V _{PGTH}		-0.3 to +6.5		
PG and FLT voltage		-0.3 to +6.5	-	
VLIM		Internally limited	V	
Maximum continuous switch current		Internally limited	A	
Thermal resistance (R _{thJA})	Per JESD51-7: High Effective Thermal Conductivity Board for Leaded Surface Mount Packages. 4 thermal vias. 4 layers PCB	19	°C/W	
ESD rating	HBM	± 2	kV	
ESD rating	CDM	± 500	, KV	
Latch up current (V _{IN} and V _{OUT})		200		
Latch up current (control and signal puls)	Power input and output pins	100	- mA	
Temperature				
Operating junction temperature		-40 to +150		
Storage temperature		-65 to +150	°C	
Maximum lead temperature		-	1	

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING RANGE					
ELECTRICAL	PIN	MIN.	MAX.	UNIT	
Input voltage (V _{IN})	IN	2.7	23	V	
Output voltage (V _{OUT})	OUT	-	VIN		
Enable pin voltage (V _{EN})	EN / UVLO	-	5		
OVP pin voltage (V _{OVP})	OVP	0.5	1.5		
P _{GTH} pin voltage (V _{PGTH})	P _{GTH}	-	5	v	
FLT pin voltage (V _{FLT})	FLT	-	5	v	
PG pin voltage (V _{PG})	PG	-	5		
ITIMER capacitor voltage (VITIMER)	ITIMER	4	-		
LIM pin resistance to ground (R _{LIM})	I _{LIM}	-	-		
Reporting ratio, $I_{OUT} \ge 1 \text{ A} (V_{IMON})$	I _{LIM}	96.5	114	μΑ/Α	
Continuous switch current (I _{MAX})	IN to OUT	-	8	A	
Operating junction temperature (T _J)	-	-40	+125	°C	

ELECTRICAL SPECIFICATIONS						
		TEST CONDITIONS UNLESS SPECIFIED		LIMITS		
PARAMETER	SYMBOL	-40 °C < T_J < 125 °C, V_{IN} = 12 V, OUT = open, V_{EN} high = 2 V, V_{OVP} = 0 V for SiP32435 and SiP32437, R_{ILIM} = 715 Ω (target set 8 A), SS = open, I_{TIMER} = open, FLT = open for SiP32435, P_{GTH} = open for SiP32436 and SiP32437, P_G = open for SiP32436 and SiP32437	MIN.	ТҮР.	MAX.	UNIT
Power Supply						
Quiescent current	I _{Q(ON)}	EN = 1.8 V, V_{IN} = 2.8 V to 23 V, V_{OUT} open	-	290	575	
Switch off current	I _{Q(OFF)}		-	55	135	μA
Shutdown current	I _{SD}	EN / UVLO < V _{SD} (F)	-	1.6	3	
V _{IN} undervoltage rising threshold	V _{UVP} (R)		2.39	2.6	2.82	
V _{IN} undervoltage falling threshold	V _{UVP} (F)		2.32	2.48	2.64	V
V _{IN} undervoltage threshold hysteresis	V _{UVP} (HYST)		-	120	-	mV
Overvoltage Clamp (OVC)						
• • • • • • • • • • • • • • • • • • •	N/	OVCSEL = GND	3.6	3.8	4.2	
Over voltage clamp threshold	V _{OVC}	OVCSEL = open OVCSEL = 390 k to GND	5.25 13	5.75 14.1	6.15 15.3	-
		OVCSEL = 390 k to GND OVCSEL = GND	2.7	3.45	4.1	V
Clamped output voltage	V _{CLAMP}	OVCSEL = open	4.8	5.5	6.2	-
· · · ·		OVCSEL = 390K to GND	12.3	13.4	14.6	
Output Load Current Monitor (I _{LIM})						
Analog switch current reporting gain	GIMON	$I_{OUT} < I_{LIM}$, 1 A < $I_{OUT} < 8$ A	96.5	105.5	113.5	μA/A
	I _{MON} offset	When I _{OUT} < 1 A	-18	-	+16	μA
Overcurrent Protection	I			T	-	
		$R_{ILIM} = 6.65 \ k\Omega$	0.76	0.87	0.97	
Overcurrent threshold	l	$R_{ILIM} = 3.32 \ k\Omega$	1.55	1.73	1.9	A
Overcurrent threshold	ILIM	$R_{ILIM} = 1.65 \ k\Omega$	3.2	3.48	3.7	
		R _{ILIM} = 750 Ω	7	7.67	8.15	
	I _{LIM}	I _{LIM} pin open	-	-	0.13	
Pin shorted to GND	I _{LIM}	I _{LIM} pin shorted to GND	0.45	1.35	2.3	А
	I _{FT}	Based on characterization	24	27	33	1
Fast trip current to ILIM ratio	ISCRATIO		1.7	2	2.4	
Current limit foldback threshold	V _{FB}		-	50	-	%
Switch On Resistance	-10					,.
	R _{ON}	I _{OUT} = 1 A, T _J = 25 °C	-	9.2	14	mΩ
Enable / Undervoltage Lockout (EN / UVLO)						
EN / UVLO rising threshold	V _{EN} (R)		1.17	1.21	1.25	v
EN / UVLO falling threshold	V _{EN} /F)		1.05	1.1	1.15	v
EN/UVLO threshold hysteresis	V _{ENHYST}		60	100	140	mV
EN/UVLO leakage	I _{EN}	T _J = 25 °C	-0.1	-	+0.1	μA
EN / UVLO falling threshold for low shutdown current	V _{SD} (F)	Pull low enabled when voltage is less than VSD (F)	0.55	0.7	0.9	V
Overvoltage Protection (OVLO)						1
OVLO rising threshold	V _{OV} (R)		1.15	1.2	1.25	v
OVLO falling threshold	V _{OV} (F)		1.05	1.1	1.17	v
OVLO hysteresis	V _{OV(HSYST)}		25	90	150	mV
OVI O pip lookage ourrept		0.5 V < VOVLO < 1.5 V, T _J = 25 °C (SiP32437x only)	-0.1	-	0.1	
OVLO pin leakage current	V _{OVLKG}	0.5 V < VOVLO < 1.5 V, T _J = 25 °C (SiP32436x)	-	1	4	μA

S24-1303-Rev. A, 06-Jan-2025

Vishay Siliconix

ELECTRICAL SPECIFICATIONS						
		TEST CONDITIONS UNLESS SPECIFIED		LIMITS		
PARAMETER	SYMBOL	-40 °C < T _J < 125 °C, V _{IN} = 12 V, OUT = open, V _{EN} high = 2 V, V _{OVP} = 0 V for SiP32435 and SiP32437, R _{ILIM} = 715 Ω (target set 8 A), SS = open, I _{TIMER} = open, FLT = open for SiP32435, P _{GTH} = open for SiP32436 and SiP32437, P _G = open for SiP32436 and SiP32437	MIN.	TYP.	MAX.	UNIT
Overcurrent Fault Timer (I _{TIMER})						
	I _{TIMER}	I _{TIMER} pin internal discharge current under OC condition	1.65	2	2.45	μA
30 % charge or discharge, but 1.5 V delta volt	age on this pi	n, reference to GND or 1.2 V whatever. Below	are parar	neter for	dischar	ge
I _{TIMER} pin internal pull-up resistance	RITIMER		3	6	11	kΩ
I _{TIMER} pin internal pull-up voltage	VINT		1.58	1.76	1.94	
I _{TIMER} comparator threshold under OC condition	V _{ITIMER} (F)		0.13	0.2	0.27	
I _{TIMER} charge / discharge differential voltage threshold under OC condition	ΔV_{ITIMER}		1.35	1.55	1.75	V
PGD, Power Good, SiP32436 and SiP32437						
Power good indication voltage	V _{PGD}	When asserted, V _{IN} > V _{UVP} (R), PG pin voltage while de-asserted	-	1.6	7.6	mV
r ower good malouter verage	♥ PGD	When de-asserted, $V_{IN} < V_{UVP}$ (F), device is off, EN $< V_{SD}$ (F), 250 μA pull up current.	650	830	1010	
PG pin leakage current	I _{PGLKG}	PG asserted, T _J = 25 °C	-	-	1	μA
Power Good Threshold (PGTH)	1			1	1	r —
PGTH rising threshold	V _{PGTH} (R)		1.14	1.2	1.28	v
PGTH falling threshold	V _{PGTH} (F)		1.03	1.1	1.16	
PGTH hysteresis	V _{PGTH(HYST)}		70	115	150	mV
PGTH pin leakage current	IPGTHLKG	T _J = 25 °C	-0.1	-	0.1	μA
Over-temperature Protection (OTP)				1		-
Thermal shutdown rising threshold	T _{SD}	Rising T _J	-	150	-	°C
Thermal shutdown hysteresis	T _{SDHYS}	Falling T _J	-	30	-	
Suggested max. operation T _J is 125 °C						
Soft Start Slew Rate (SS)	T .			L		
SS internal charging current	I _{SS}		225	335	445	nA

Vishay Siliconix

DOD		

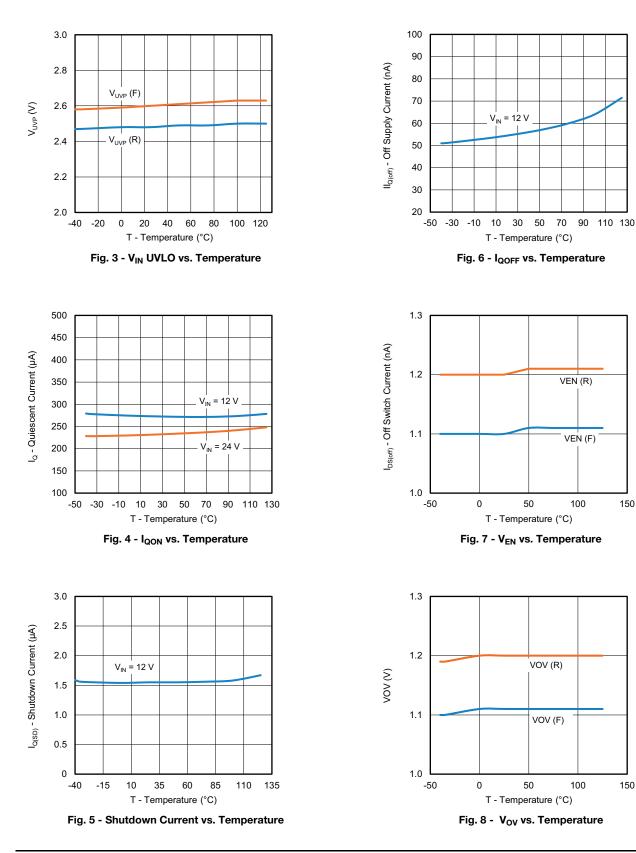
PRODUCT TIMING						
PARAMETER	SYMBOL			LIMITS		
PARAMETER	STINDUL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Power Supply		•		•	•	
Overvoltage lockout response time	t _{OVLO}	$V_{IN} > V_{OV \circledast}$ to V_{OUT} starts to fall	-	0.6	-	
Overvoltage clamp response time	t _{ovc}	$V_{IN} > V_{OVC}$ to V_{OUT} starts to fall	-	5	-	
Circuit breaker response time	t _{CV}	From I_{OUT} at 1.3 x I_{LIM} to V_{OUT} fall. I_{TIMER} open	-	5.9	-	μs
Current limit response time	t _{LIM}	From I_{OUT} at 1.3 x I_{LIM} to I_{OUT} settling to within 5 % of I_{LIM}	-	0.35	-	
Short-circuit response time	t _{SC}	$I_{OUT} > 3 \text{ x } I_{LIM} \text{ to } I_{OUT} \text{ cut off}$	-	300	-	20
Fixed fast-trip response time	t _{FT}	I _{OUT} > IFT to I _{OUT} cut off	-	200	-	ns
Thermal Shutdown to auto-retry interval	t _{TSD, RST}	T _J < T _{SD} - T _{SDHYS}	-	34	-	
PG assertion de-glitch time	t _{PGA}	V _{PGTH} > V _{PGTH} (R) to PG rises	-	18	-	
PG de-assertion de-glitch time	t _{PGD}	V _{PGTH} > V _{PGTH} (F) to PG falls	-	18	-	μs
V _{OUT} slew rate	SR	R_L = 100 Ω, CL = 1µF, C _{SS} = 3.3 nF, V _{IN} = 2.7 V to 23 V, 25 °C	4.3	11	17.5	V/ms
		EN high to 10 % V _{OUT} , SiP32436x	540	865	1200	
Turn on delay	tONDLY	EN high to 10 % V _{OUT} , SiP32437x	335	655	985	μs

PGD LOGIC TABLE - SiP32436 AND SiP32437					
EVENT	SWITCH STATUS	SWITCH STATUS PGD OUTPUT			
V _{IN} undervoltage, UVP or UVLO	Off	Low	NA		
Overvoltage clamping, SiP32436	On, clamp	High, if P _{GTH} > V _{PGTH} (R) Low, if P _{GTH} < V _{PGTH} (F)	t _{PGA} t _{PGD}		
Overvoltage, SiP32437 only	Off	Low	t _{PGD}		
Switch ON	On	High, if P _{GTH} > V _{PGTH} (R) Low, if P _{GTH} < V _{PGTH} (F)	t _{PGA} t _{PGD}		
Overcurrent during I _{TIMER} period	On $\begin{array}{c} \text{High, if } P_{\text{GTH}} > V_{\text{PGTH}}(R) \\ \text{Low, if } P_{\text{GTH}} < V_{\text{PGTH}}(F) \end{array}$		t _{PGA} t _{PGD}		
Overcurrent, persistent, SiP32436, current clamping	On, clamp	High, if P _{GTH} > V _{PGTH} (R) Low, if P _{GTH} < V _{PGTH} (F)	t _{PGA} t _{PGD}		
Overcurrent, persistent, SiP32437, circuit breaker	Off	Low	t _{PGA} t _{PGD}		
Output short circuit / sever overcurrent	On, clamp	High, if P _{GTH} > V _{PGTH} (R) Low, if P _{GTH} < V _{PGTH} (F)	t _{PGA} t _{PGD}		
Overtemperature	Off	Low, if P _{GTH} < 1.1 V	t _{PGD} + t _{ITIMER}		
I _{LIM} pin open	Off	Low	t _{PGD}		
I _{LIM} pin short to GND	Off	Low	t _{PGD}		

www.vishay.com

Vishay Siliconix

FAULT RESPONSE AND /FLT LOGIC TABLE						
EVENT	SWITCH RESPONSE	LATCHABLE FAULT	/FLT STATUS (SiP32435 ONLY)	/FLT ASSERTION DELAY		
V _{IN} undervoltage, UVP or UVLO	Off	No	High			
Overvoltage, SiP32435	Off	No	High			
Overvoltage, SiP32436	Voltage clamp	No	n/a			
Overvoltage, SiP32437	Off	No	n/a			
Overcurrent during ITIMER period	No	No	n/a			
Overcurrent, persistent, SiP32436, current clamping	Current clamping	No	n/a			
Overcurrent, persistent, SiP32437x, circuit breaker	Off	Yes	n/a			
Output short circuit/sever overcurrent	Breaker then current limit	No	High	After I _{TIMER}		
Overtemperature	Off	Yes	Low			
ILIM pin open during normal steady state	Off	No	Low	After I _{TIMER}		
I _{LIM} pin short to GND	Off	Yes	Low	After I _{TIMER}		


Latchable faults can be reset either by VIN power cycling or by pulling EN / UVLO below VSD (F). This also resets the auto-retry timer. EN / UVLO should be below V_{SD} (F), not UVLO threshold.

Auto Retry option devices restart automatically and alert pin is de-asserted on the expiry of the t_{RST} (100 ms ~150 ms) timer.

Vishay Siliconix

TYPICAL CHARACTERISTICS

S24-1303-Rev. A, 06-Jan-2025

8

Document Number: 61536

Vishay Siliconix

TYPICAL CHARACTERISTICS

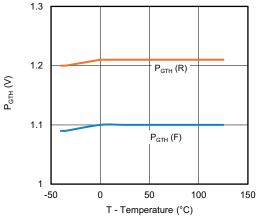


Fig. 9 - P_{GTH} Threshold vs. Temperature

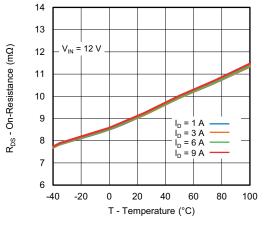


Fig. 10 - R_{DS(on)} vs. Temperature

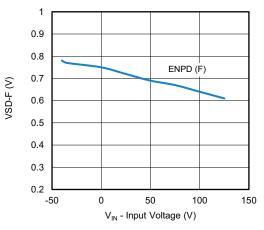


Fig. 11 - EN Shutdown Threshold vs. Temperature

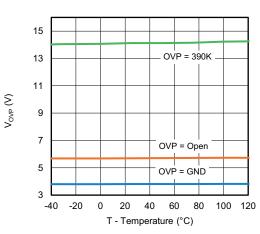
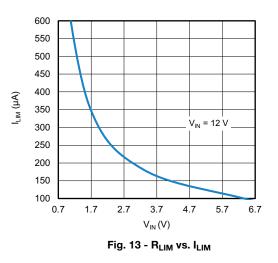
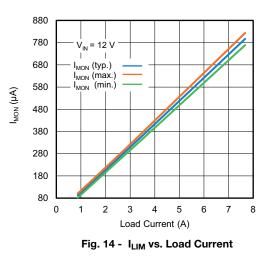




Fig. 12 - OV Threshold vs. Temperature

S24-1303-Rev. A, 06-Jan-2025

9

Document Number: 61536

Vishay Siliconix

TYPICAL CHARACTERISTICS

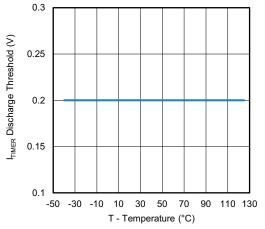


Fig. 15 - Timer Discharge Voltage vs. Temperature

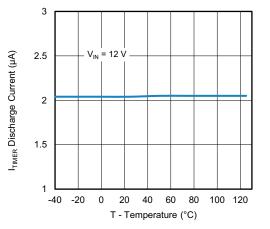


Fig. 16 - Timer Discharge Current vs. Temperature

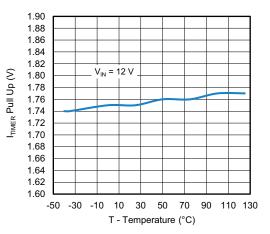


Fig. 17 - Timer Pull Up Voltage vs. Temperature

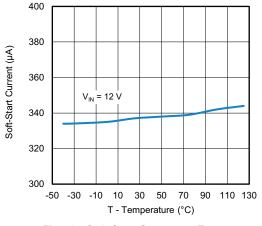


Fig. 18 - Soft-Start Current vs. Temperature

10

Vishay Siliconix

TYPICAL CHARACTERISTICS

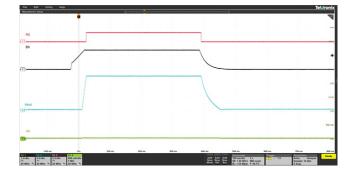
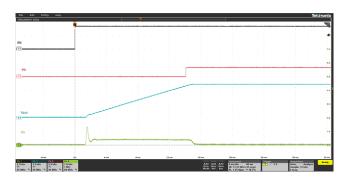
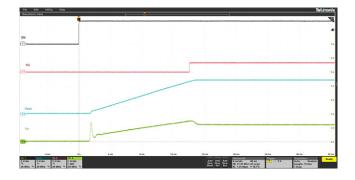


Fig. 19 - Power Up and Down With EN/UVLO Control V_{IN} = 12 V, C_{OUT} = 22 μ F, C_{SS} = 3.3 nF, VEN/UVLO ramped from 0 V \rightarrow 1.4 V \rightarrow 0 V

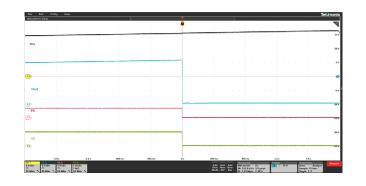

Fig. 22 - Inrush Current With Slew Rate Control – Capacitive Load $V_{IN} = 12$ V, $C_{OUT} = 470$ µF, $C_{SS} = 3.3$ nF, VEN/UVLO stepped up to 3.3 V

Fig. 20 - Power Up and Down With Input Supply V_{IN} = 22 V, C_{OUT} = 22 μ F, C_{SS} = 3.3 nF, VEN/UVLO ramped from 0 V \rightarrow 12 V \rightarrow 0 V

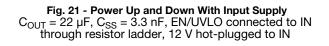


Fig. 24 - Overvoltage Lockout Response – SiP32437 OV threshold set to 15.8 V, $V_{\rm IN}$ ramped up from 12 V to 16.5 V

A Vide A Vide J Alde

11

Document Number: 61536

Vishay Siliconix

TYPICAL CHARACTERISTICS

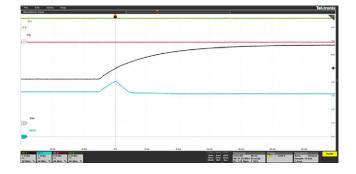


Fig. 25 - Overvoltage Clamp Response - SiP32436 ROVCSEL = GND, C_{OUT} = 220 µF, I_{OUT} = 200 mA, V_{IN} ramped up from 3.3 V to 5.8 V

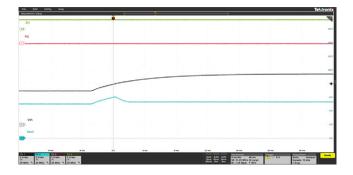


Fig. 26 - Overvoltage Clamp Response - SiP32436 ROVCSEL = Open, C_{OUT} = 220 µF, I_{OUT} = 200 mA, V_{IN} ramped up from 5 V to 7.5 V

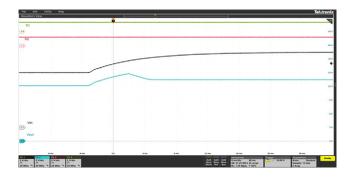


Fig. 27 - Overvoltage Clamp Response - SiP32436 ROVCSEL = 390 k $\Omega,$ C_{OUT} = 220 $\mu F,$ I_{OUT} = 200 mA, V_{IN} ramped up from 12 V to 16.5 V

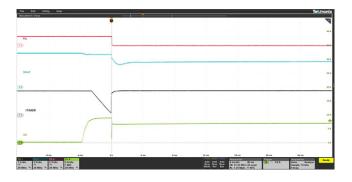
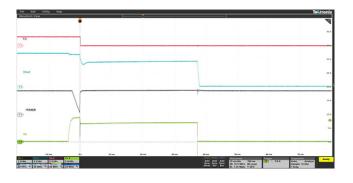



Fig. 28 - Active Current Limit Response - SiP32436 V_{IN} = 12 V, CITIMER = 3.3 nF, C_{OUT} = 220*2 µF, R_{ILM} = 680 Ω , Resistor stepped from Open $\Omega \rightarrow$ 1.3 Ω

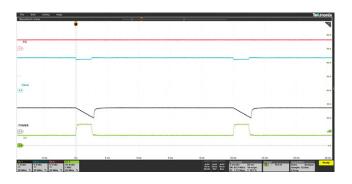


Fig. 30 - Transient Overcurrent Blanking Timer Response $V_{IN} = 12$ V, CITIMER = 3.3 pF, $C_{OUT} = 220^{*2}$ µF, $R_{ILM} = 680 \Omega$, I_{OUT} ramped from 7 A \rightarrow 15 A \rightarrow 7 A within 1 ms

12

Vishay Siliconix

TYPICAL CHARACTERISTICS

Fig. 31 - Circuit-Breaker Response SiP32437 V_{IN} = 12 V, CITIMER = 3.3 nF, C_{OUT} = 220*2 μ F, R_{ILM} = 680 Ω , I_{OUT} stepped from 0 A \rightarrow 15 A

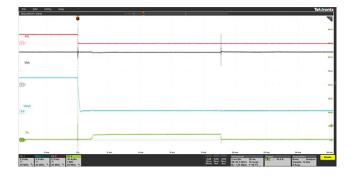


Fig. 32 - Output Short-Circuit During Steady Stat V_{IN} = 12 V, R_{ILM} = 680 Ω , OUT stepped from Open \rightarrow Shortcircuit to GND

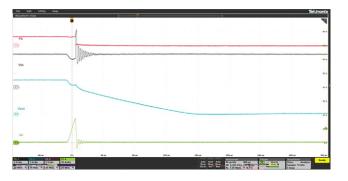


Fig. 33 - Output Short-Circuit During Steady State (Zoomed In) $V_{\text{IN}} = 12 \text{ V}, \text{ R}_{\text{ILM}} = 680 \Omega,$ OUT stepped from Open \rightarrow Shortcircuit to GND

Fig. 34 - Power Up into Short-Circuit $V_{IN} = 12 \text{ V}, C_{OUT} = \text{Open}, \text{OUT short-circuit to GND}, R_{ILM} = 680 \ \Omega, \text{VEN/UVLO stepped from 0 V to 3.3 V}$

Vishay Siliconix

OVERVIEW

The SiP32435/6/7x is an eFuse that provides controllability and safety in power management system designs. The SiP32435/6/7x features programmable overvoltage, undervoltage, power good, and overcurrent protections, in addition to overtemperature shutdown. Its start-up output voltage slew rate can be set to control the inrush current level.

The devices operate when powered at the V_{IN}. When the V_{IN} clears the undervoltage lockout (UVLO) threshold, a logic high signal - higher than the VUVLO - on the EN / UVLO enables the integrated power path in a controlled slew rate.

The device monitors switch current from the start of the power path, and enables and controls the switch to ensure the user-defined overcurrent limit is not exceeded. The switch will go off swiftly to protect it from severe overcurrent conditions, such as short circuit. To cater for load circuits that require moderate transient surge current, an user-defined overcurrent blanking timer, iTimer, sets the time to allow the higher than I_{LIM} current to pass through the switch without switch-off interruption. Overvoltage on the V_{IN} is either clamped to selected thresholds (VOVC), or switched off if the overvoltage is higher than the user-defined UVLO thresholds. Such a design provides precise and prompt protection, in addition to immunity to circuit transients, for smooth circuit operation.

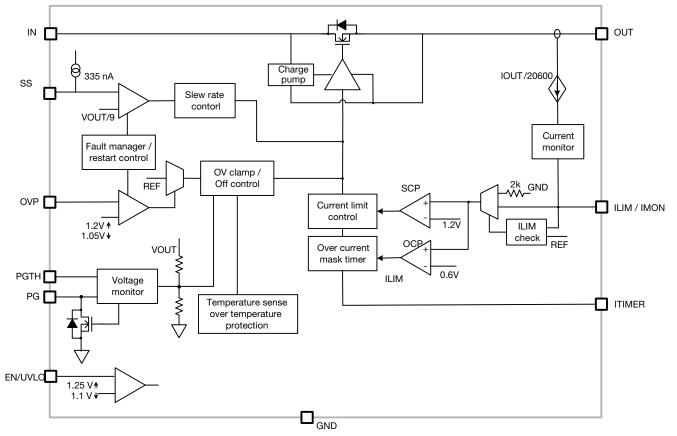
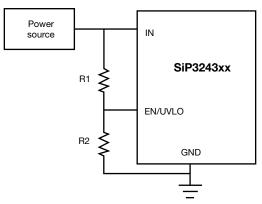


Fig. 35 - SiP3243x Block Diagram



Vishay Siliconix

PRODUCT FEATURES

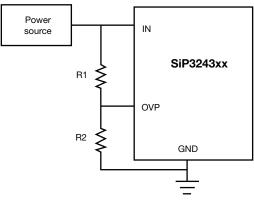
Undervoltage Protections: Undervoltage Protection (UVP) and Undervoltage Lockout (UVLO)

The devices have two undervoltage protections. One is a built-in fixed threshold V_{IN} UVP (VUVP), which ensures that the V_{IN} voltage is sufficient for proper device operation. The other is undervoltage lockout (UVLO). A user-defined UVLO threshold can be set by the voltage resistor divider, as shown in Fig. 36.

Fig. 36 - User-Defined V_{IN} Undervoltage Lockout

The equation below shows how a resistor divider sets the UVLO threshold per a given V_{IN} level.

$$V_{\rm IN(UVP)} = \frac{V_{\rm UVLO} \times (R_1 + R_2)}{R_2}$$


Overvoltage Protection

The SiP32435/6/7x has two overvoltage protection options to protect the load from input overvoltage conditions:

- The SiP32435x and SiP32437x feature user-defined overvoltage lockout (OVLO)
- The SiP32436x features overvoltage clamping (OVC) on three user-selected voltage levels (VOVC)

Overvoltage Protection (OVLO)

The SiP32435x and SiP32437x VIN OVLO thresholds can be set by a resistor divider, as per Fig. 37. When the voltage on OVLO crosses the OVLO rising threshold, $V_{OV(R)}$, the switch is off. The switch will be ON again when the voltage on OVLO falls across $V_{OV(F)}$. The switch on follows the slew rate. Overvoltage is not a latchable fault, meaning when the fault is removed, the switch will turn on again.

Fig. 37 - User-Defined Overvoltage Lockout

The equation below shows how a resistor divider sets the OVLO threshold per a given V_{IN} level.

$$\mathsf{V}_{\mathsf{IN}(\mathsf{OV})} = \frac{\mathsf{V}_{\mathsf{OV}} \times (\mathsf{R}_1 + \mathsf{R}_2)}{\mathsf{R}_2}$$

S24-1303-Rev. A, 06-Jan-2025

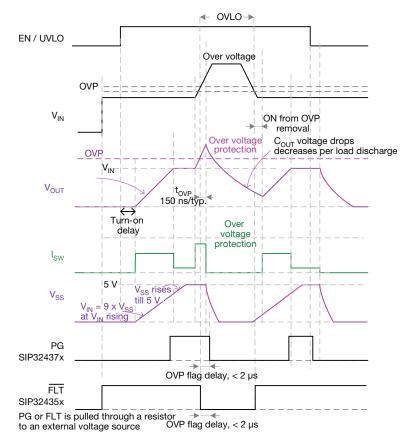


Fig. 38 - SiP32435x and SiP32437x Overvoltage Lockout and Recovery

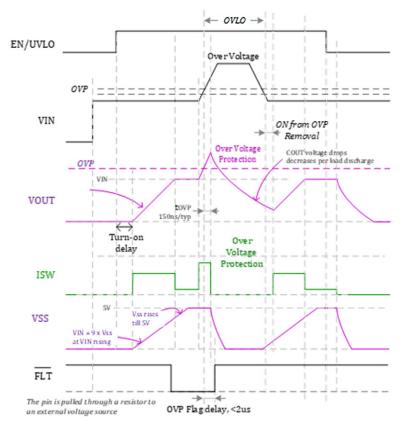


Fig. 39 - SiP32435x Overvoltage Lockout and Recovery

Overvoltage Clamping (OVC)

When the V_{IN} voltage exceeds the overvoltage clamp threshold (V_{OVC}), the SiP32436x regulates the switch and clamps the output to the voltage level of V_{CLAMP}. There are three V_{CLAMP} threshold levels that can be selected by the OVCSEL pin.

SiP32436x OVCSEL PIN SETTING				
OVCSEL PIN SETTING	OVERVOLTAGE CLAMPING THRESHOLD			
Connected to GND	3.8 V			
Open	5.8 V			
Connect to GND through a 390 k Ω resistor	14.2 V			

The device stays in the clamping state as long as the V_{IN} overvoltage persists. The device's power dissipation could be high in this state. If such a clamping condition lasts for an extended period, overtemperature protection could shut down the switch if T_J reaches the OTP threshold. For the auto-retry option, the device will restart after a delay time of 34x of t_{SS} .

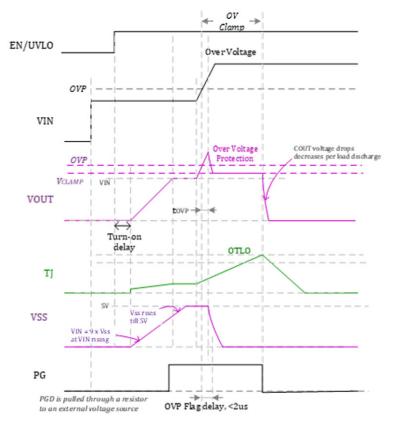


Fig. 40 - SiP32436x Overvoltage Clamping and Recovery

Turn-on Slew Rate and Inrush Current Management

A heavy capacitive load or hot-plug event can result in large inrush current or sparking at the connector contact. Such conditions should be properly managed to minimize the inrush current for a smooth switch-on transition without causing system power bus interruption or connector damage. The below equation shows how to determine the slew rate, given inrush current limit and load capacitance. Given the inrush current limit, load capacitance, and operation voltage, the proper soft start time can be determined.

Slew Rate =
$$\frac{V_{OUT}}{t_{SS}} = \frac{I_{INRUSH}}{C_{OUT}}$$

The capacitor connected between SS and GND determines the device's soft start slew rate. The output slew rate control circuit regulates the V_{OUT} to 9x of V_{SS} .

Slew Rate =
$$\frac{V_{OUT}}{t_{SS}} = \frac{I_{SS}}{C_{SS}} \times 9$$

For the fastest output slew rate, please leave the SS pin open.

During the soft start, when V_{OUT} is below 50 % of V_{IN}, the overcurrent limit threshold is folded back by 50 %. Together with overtemperature protection, the devices are protected from overstress conditions that could result in degraded reliability.

Www.vishay.com

Vishay Siliconix

Circuit Breaker - SiP32437x

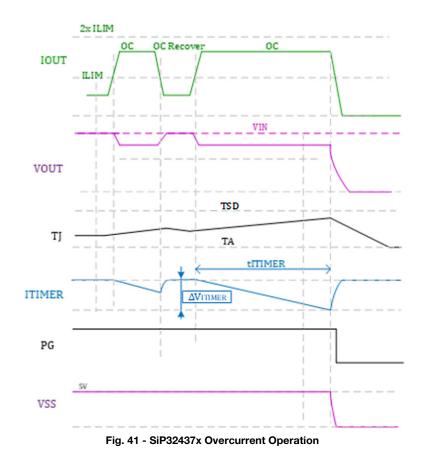
The SiP32437x will turn off the switch if the output overcurrent condition persists after the user-defined fault blanking time.

The device overcurrent threshold is set by R_{LIM} and its overcurrent fault blanking time is set by iTimer. When the load current crosses the overcurrent threshold, the iTimer circuit starts counting the time by discharging the capacitor (C_{ITIMER}) with a constant I_{ITMER} (2 µA). If the overcurrent condition still exists when the voltage on C_{ITIMER} is discharged by ΔV_{ITIMER} , the switch will be turned off, otherwise iTimer will reset as soon as the current falls below the I_{LIM} level. In the event the load current reaches the short circuit protection threshold (2 x I_{LIM}), the switch will be turned off immediately.

The overcurrent limit (I_{LIM}) for a set resistor (R_{ILIM}) can be calculated by the equation below.

$$\mathsf{R}_{\mathsf{ILIM}} = \frac{600 \, \mathsf{mV}}{\mathsf{G}_{\mathsf{IMON}} \times \mathsf{I}_{\mathsf{LIM}}}$$

 G_{IMON} is the switch current sense gain on the I_{LIM} / I_{MON} pin of 105.5 $\mu\text{A/A}.$


The overcurrent blanking time, which allows the load current transient, can be programmed by the capacitor (C_{ITIMER}) connected between the iTimer pin and GND.

$$\text{iTimer} = \frac{I_{\text{ITIMER}}}{C_{\text{ITIMER}} \times \Delta V_{\text{ITIMER}}}$$

 ΔV_{ITIMER} is 1.55 V

 I_{ITIMER} is 2 μ A

It is recommended to leave the iTimer pin open if the fastest overcurrent switch-off response is required.

The switch-off upon overcurrent will stay latched off until the V_{IN} power reset, logic toggling, or the auto-retry feature is active.

Vishay Siliconix

Current Limiting / Active Current Clamping - SiP32435x and SiP32436x

The SiP32435x and SiP32436x will actively regulate the output current if the output overcurrent condition persists after the user-defined fault blanking time.

The device overcurrent threshold is set by R_{LIM} and its overcurrent fault blanking time is set by iTimer. When the load current crosses the overcurrent threshold, the iTimer circuit starts counting the time by discharging the capacitor (C_{ITIMER}) with a constant I_{ITMER} (2 µA). If the overcurrent condition still exists when the voltage on C_{ITMER} is discharged by ΔV_{ITMER} , the switch will actively regulate the output current to the overcurrent threshold set by R_{ILIM} . Otherwise, iTimer will reset as soon as the current falls below the I_{LIM} level. In the event the load current reaches the short circuit protection threshold (2 x I_{LIMI}), the switch will be turned off immediately.

The overcurrent threshold is set up by the resistor (R_{ILIM}) on the I_{LIM} pin. The overcurrent limit (I_{LIM}) set by the resistor (R_{ILIM}) can be calculated by the equation below.

$$\mathsf{R}_{\mathsf{ILIM}} = \frac{600 \text{ mV}}{\mathsf{G}_{\mathsf{IMON}} \times \mathsf{I}_{\mathsf{LIM}}}$$

 G_{IMON} is the switch current sense gain on the I_{LIM} / I_{MON} pin of 105.5 $\mu\text{A/A}.$

The overcurrent blanking time, which allows the load current transient, can be programmed by the capacitor (C_{ITIMER}) connected between the iTimer pin and GND.

$$\text{iTimer} = \frac{I_{\text{ITIMER}}}{C_{\text{ITIMER}} \times \Delta V_{\text{ITIMER}}}$$

When the I_{LIM} pin is open, the current limit is set to a low current level below 0.13 A. The part will begin overcurrent clamping with the very light load. In case the I_{LIM} is short is GND, the overcurrent clamping is set to 1.35 A typically.

The overcurrent protection circuit implements a foldback scheme when the V_{OUT} is below 50 % of V_{IN} .

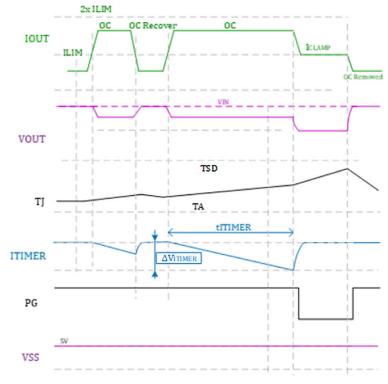


Fig. 42 - SiP32435x and SiP32436x Active Overcurrent Clamping Operation

S24-1303-Rev. A, 06-Jan-2025

Vishay Siliconix

When the iTimer pin is open, the devices will respond to overcurrent with a minimum possible delay.

During start-up, the devices will respond to overcurrent events without any delay (blanking time). They will actively regulate the output current to the set I_{LIM} level. There is no circuit breaker mode during start-up. iTimer is active only after the start-up is completed.

If overcurrent happens during output voltage clamping for the SiP32436x, overcurrent clamping will be engaged immediately without the blanking timer.

Overcurrent clamping could result in overheating due to increased power dissipation across the switch. Thermal protection will kick in once the junction temperature reaches the thermal shutdown threshold (TSD).

Severe Overcurrent and Short Circuit Protection

The severe overcurrent threshold is 2x I_{LIM}. There is also an internal fixed short circuit protection threshold of 27 A. The severe overcurrent will turn off the switch.



Fig. 43 - SiP32435x and SiP32436x Active Overcurrent Clamping Operation

Analog Current Reporting Through ILIM

The I_{LIM} pin can serve both overcurrent limit setting and current reporting functions. The application circuit can acquire switch current through reading the voltage on the I_{LIM} pin, since its voltage developed over R_{LIM} is proportional to its switch current. 600 mV on the I_{LIM} pin represents the current of the overcurrent threshold level.

$$I_{OUT} = \frac{V_{ILIM}}{R_{ILIM} \times G_{IMON}}$$

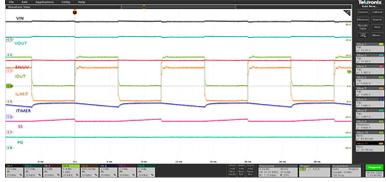


Fig. 44 - I_{MON} Current Monitor Response

The circuit load current is the switch current plus the output capacitance current.

Overtemperature Protection

The overtemperature protection circuit is active all the time, monitors the junction temperatures, and shuts the switch off under any condition as soon as it reaches thermal shutdown threshold (TSD), protecting the device from damage or performance and reliability degradation. When the junction temperature cools down by the thermal shutdown hysteresis (TSDHYS), the device can be turned on.

DEVICE	OVERTEMPERATUR PROTECTION RESET
SiP3243xA, latch-off option	T _J falls by TSDHYS below the TSD; V _{IN} recycled or EN / UVLO toggled
SiP3243xB, auto-retry option	Once T _J falls by TSDHYS below the TSD, the device's auto-retry timer will be on and gets in start-up if EN / UVLO is at logic high (Fig. 45, auto-retry option)

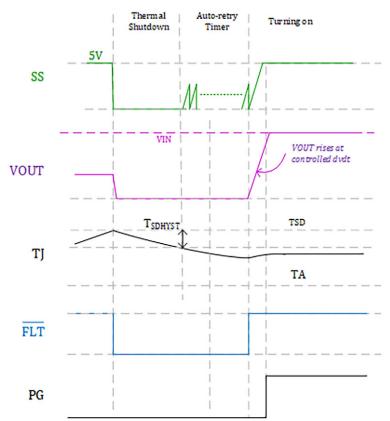


Fig. 45 - SiP3243xB Auto-Retry, Exit From Thermal Shutdown

Fault Event Response and FLT Output

The SiP32435x has an open drain output pin (FLT) that indicates a fault with an active low signal. The table below summarizes the device's responses to various fault conditions.

FAULT EVENT	LATCHED FAULT	FLT PIN OUTPUT	DEVICE RESPONSE
Overtemperature	Y	L	Shutdown
Undervoltage	N	Н	Shutdown
Overvoltage (SiP32437x)	N	Н	Shutdown
Overvoltage (SiP32436x)	N	Н	Voltage clamp
Overcurrent (transient, < 2 x I _{LIM})	N	Н	No
Continuous overcurrent (SiP32437x)	Y	L	Circuit breaker
Continuous overcurrent (SiP32436x)	Y	Н	Current clamp after iTIMER
Output severe overcurrent (SiP32437x)	Y	L	Circuit breaker
Output severe overcurrent (SiP32436x)	Y	L	Current clamp
Overtemperature	Y	L	Shutdown
I _{LIM} pin open	N	L	Shutdown after iTIMER
I _{LIM} pin short to ground	N	L	Shutdown after iTIMER

The devices' latched fault status can be reset by recycling V_{IN} to GND or toggling the EN / UVLO pin below VSD. This will clear the fault indication on /FLT and reset the auto-retry timer for the SiP32435B variant.

Auto-retry variants, SiP3243xB, restart automatically after t_{RST} , which is 34x of t_{R} , upon the fault latch.

S24-1303-Rev. A, 06-Jan-2025	23	Document Number: 61536	
	For technical questions, contact: powerictechsupport@vishay.com	<u>n</u>	
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT			
ARE SUBJE	ECT TO SPECIFIC DISCLAIMERS. SET FORTH AT www.vishav.cor	m/doc?91000	

Fault Event Response and PG Output

The PG pin of the SiP32436x and SiP32437x provides an active high output indicating power good. This is an open drain output pin that must be pulled up to an external bias voltage source. P_G high is asserted when the P_{GTH} pin voltage meets the required level and proper device states.

 P_{G} is de-asserted during operation in the event the P_{GTH} voltage falls below $V_{PGTH(F)}$, or a fault is detected.

This open drain output pin indicates a fault with an active low signal.

PG PIN INDICATION SUMMARY			
FAULT EVENT	SWITCH RESPONSE	PG PIN STATUS	
Overtemperature	Off	L	
Normal ON operation	On	H, if P_{GTH} pin voltage > $V_{PGTH(R)}$ L, if P_{GTH} pin voltage < $V_{PGTH(L)}$	
Undervoltage	Off	L	
Overvoltage (SiP32436x)	On (VOUT clamping)	H, if P_{GTH} pin voltage > $V_{PGTH(R)}$ L, if P_{GTH} pin voltage < $V_{PGTH(L)}$	
Overvoltage (SiP32437x)	Off	L	
Overcurrent (transient, < 2 x I _{LIM})	On	H, if P_{GTH} pin voltage > $V_{PGTH(R)}$ L, if P_{GTH} pin voltage < $V_{PGTH(L)}$	
Continuous overcurrent (SiP32436x)	On (IOUT limiting)	H, if P_{GTH} pin voltage > $V_{PGTH(R)}$ L, if P_{GTH} pin voltage < $V_{PGTH(L)}$	
Continuous overcurrent (SiP32437x)	Off (circuit breaker variants)	L	
Output severe overcurrent (SiP32436x)	Current limit	H, if P_{GTH} pin voltage > $V_{PGTH(R)}$ L, if P_{GTH} pin voltage < $V_{PGTH(L)}$	
Output severe overcurrent (SiP32437x)	Current limit	H, if P_{GTH} pin voltage > $V_{PGTH(R)}$ L, if P_{GTH} pin voltage < $V_{PGTH(L)}$	
I _{LIM} pin open	Off	L	
I _{LIM} pin short to ground	Off	L	

ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

Device Applications

The recommended V_{IN} operation voltage for the SiP3243xx series is 2.7 V to 23 V. It provides protection features of undervoltage, adjustable overvoltage, adjustable slew rate and inrush control, overcurrent, and overtemperature. It is always suggested to have a ceramic input bypass capacitor of 0.1 µF or higher. The switch current flow is shut off promptly in the event of short circuit or overcurrent events, the input path inductance generates a positive voltage, and the output path inductance brings a negative spike at the V_{OUT} pin. Such a surge / spike voltage could exceed the devices' rating. Measures that can be taken to address the voltage spike include:

- Minimized power path length
- Maximized V_{IN} PCB trace and GND plane
- Adding TVS at V_{IN}, and a Schottky diode at V_{OUT}
- Adding a 1 µA ceramic capacitor at VIN, close to the device

Fig. 46 and Fig. 47 show typical designs for single device self-controlled and host device controlled. In case of host device controlled designs, the EN / UVLO and / or OVLO pins can be driven by the host device's GPIOs to achieve both logic high and logic low enable.

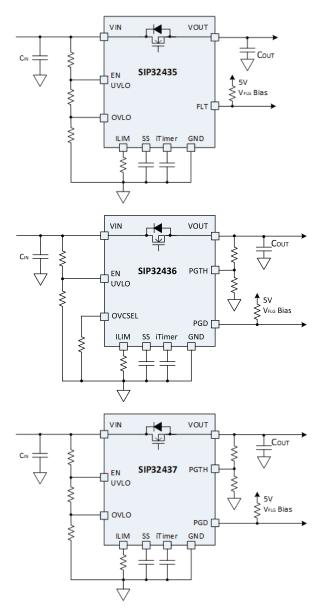


Fig. 46 - Typical Single Device, Self-Controlled Designs

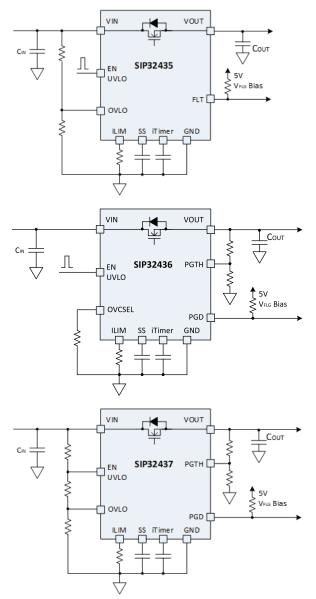


Fig. 47 - Typical Single Device, Host Device Controlled Designs

Vishay Siliconix

Application Circuit Designs

Fig. 48 shows a typical design to protect input power from load overcurrent events. This is common on various add-on functional cards in computing and network systems. For PCIE-powered cards, the SiP3243xx fits both 12 V and 3.3 V power rails.

The SiP32437B is selected for this design, which requires circuit breaker response overcurrent protection with auto retry upon a fault condition.

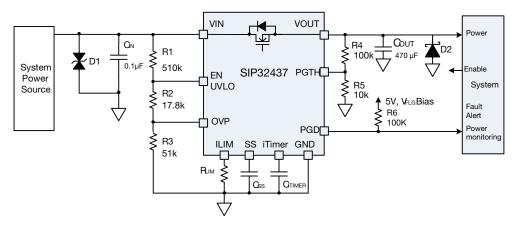


Fig. 48 - Application Circuit Design Example

CIRCUIT DESIGN REQUIREMENTS		
PARAMETER	TARGET VALUE	
Input power voltage (V _{IN})	12 V	
Undervoltage (V _{IN(UVLO)})	10.2 V	
Input overvoltage (VIN(OVLO))	13.8 V	
Output power good (V _{OUT(PG)})	11.4 V	
Max. continuous current	7 A	
Start-up V _{OUT} rise time (t _R)	25 ms	
Output transient current blanking time (t _{ITIMER})	2 ms	
Output capacitance (C _{OUT})	470 µA	
Overcurrent limit	8 A	

Setting Power Input Undervoltage and Overvoltage Thresholds

The R₁, R₂, and R₃ resistors set the V_{IN} overvoltage and undervoltage thresholds per the equations below:

$$V_{\text{IN(OVLO)}} = \frac{V_{\text{OVLO(R)}} \times (R_1 + R_2 + R_3)}{R_3}$$

$$V_{\text{IN(UVLO)}} = \frac{V_{\text{UVLO(R)}} \times (R_1 + R_2 + R_3)}{R_2 + R_3}$$

The R₁, R₂, and R₃ stand for a leakage path to the V_{IN}. The lower resistance of these resistors will increase the leakage. In the meantime, the EN / UVLO and OVLO pin leakages affect the accuracy of the V_{IN} overvoltage and undervoltage settings. Considering this factor, it is suggested to select the R₁, R₂, and R₃ resistance levels to ensure its current is 20x higher than the EN / UVLO and OVLO pin leakages.

Both the EN / UVLO and OVLO pins' maximum leakage currents are 0.1 μ A. The R₁, R₂, and R₃ total resistance should be less than 3 M Ω . The design targets V_{IN(OVLO)} of 13.8 V and V_{IN(UVLO)} of 10.2 V, with V_{OVLO(R)} and V_{UVLO(R)} of 1.2 V. First select 510 k Ω for R₁, then resolve equations (1) and (2) with R₂ of 17.74 k Ω and R₃ of 50.26 k Ω . Round to the closest standard values: R₁ = 510 k Ω , R₂ = 17.74 k Ω , and R₃ = 51 k Ω .

Setting Power-Good Threshold

Resistors R_4 and R_5 , connected to the P_{GTH} pin per Fig. 48, set the power good threshold. The power good assertion threshold with rising output voltage can be calculated as:

$$V_{PG} = \frac{V_{PGTH(R)} \times (R_2 + R_3)}{R_5}$$

The P_{GTH} pin leakage current causes an error in the calculation. It is suggested to set the R_4 / R_5 resistor current 20 times or greater than the leakage current. As shown in the specifications, the P_{GTH} maximum leakage current is 1 μ A, and the target V_{OUT} power good is 11.4 V. The R_4 / R_5 resistance should be less than 600 k Ω . First, select $R_5 = 10 \text{ k}\Omega$, and resolve the equation with $R_4 = 95 \text{ k}\Omega$. Choose the closest standard resistor value as $R_4 = 95.3 \text{ k}\Omega$.

Both the EN / UVLO and OVLO pins' maximum leakage currents are 0.1 μ A. The R₁, R₂, and R₃ total resistance should be less than 3 M Ω . The design targets V_{IN(OVLO)} of 13.8 V and V_{IN(UVLO)} of 10.2 V, with V_{OVLO(R)} and V_{UVLO(R)} of 1.2 V. First select 510 k Ω for R₁, then resolve equations (1) and (2) with R₂ of 17.74 k Ω and R₃ of 50.26 k Ω . Round to the closest standard values: R₁ = 510 k Ω , R₂ = 17.74 k Ω , and R₃ = 51 k Ω .

Setting Overcurrent / Current Limit Thresholds

The overcurrent threshold (I_{LIM}) can be set up by R_{ILM} , whose value can be calculated by the following equation:

$$R_{LIM} = \frac{0.6}{I_{LIM} \times G_{IMON}} = \frac{0.6 \text{ V}}{8 \text{ A} \times 105.5 \text{ μA/A}} = 711 \Omega$$

 G_{IMON} = 105.5 µA/A and the I_{LIM} target is 8 A. Choose the closest standard resistor value of 715 Ω .

Setting the Output Voltage Rise Slew Rate

The output voltage rise slew rate and rise time are set by C_{SS} , which can be calculated using equations (?) and (?). The controller regulates the V_{OUT} to follow 10x the SS pin voltage (V_{SS}). C_{SS} can be set properly to regulate inrush current during start-up into a heavy capacitive load. Due to the high voltage drop across the switch during start-up, the power stress is higher than the steady state when the switch is fully enhanced. The proper choice of output rise time and inrush current with circuit output capacitance will avoid device overheating, which could result in thermal shutdown. It is suggested to set the inrush current below 1/20 of the current limit (I_{LIM}). For protection, the devices have foldback current limits when V_{OUT} is below VFB.

$$C_{SS} = \frac{I_{SS} \times t_{SS} \times 10}{V_{IN}} = \frac{340 \text{ nA} \times 25 \text{ ms} \times 10}{12 \text{ V}} = 7.08 \text{ nF}$$

$$I_{\text{INRUSH}} = \frac{C_{\text{OUT}} \times V_{\text{IN}}}{t_{\text{SS}}} = \frac{340 \text{ nA} \times 12 \text{ V}}{25 \text{ ms}} = 225.6 \text{ mA}$$

Choose the C_{SS} value of 6.8 nF.

S24-1303-Rev. A, 06-Jan-2025

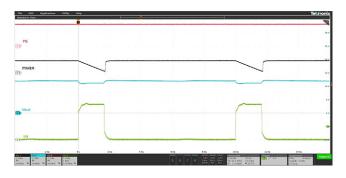
www.vishay.com

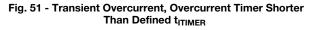
Vishay Siliconix

Setting Overcurrent Blanking Time (tITIMER)

The overcurrent blanking time is set by the CITIMER capacitor, which can be calculated as:

$$C_{\text{iTIMER}} = \frac{I_{\text{iTIMER}} \times t_{\text{iTIMER}}}{\Delta V_{\text{iTIMER}}} = \frac{2 \ \mu A \times 2 \ \text{ms}}{1.55 \ \text{V}} = 2.6 \ \text{nF}$$


Choose the closest standard capacitor value of 2.2 nF


Application Circuit Performance

The waveforms below show the behavior of the above-mentioned design example circuit.

Fig. 49 - Power Start-Up With EN/UVLO

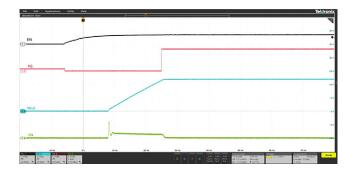


Fig. 50 - Power Start-Up With VIN Ramp

Fig. 52 - Overcurrent Circuit Breaker

Parallel Operation

Two SiP32437x devices can be paralleled for applications that require higher steady state current. The shared current between the parts can be nearly equal. The difference of sharing depends on the part to part switch resistance variation and the PCB trace resistance.

In a parallel circuit configuration, as shown in Fig. 53, the first device starts up initially to provide V_{OUT} slew rate control and V_{OUT} power good indication through P_G . The second device's EN / UVLO pin is connected to the first device's P_G and is turned on upon start-up completion of the first device. The second device's P_G indicates the status of the paralleled circuit.

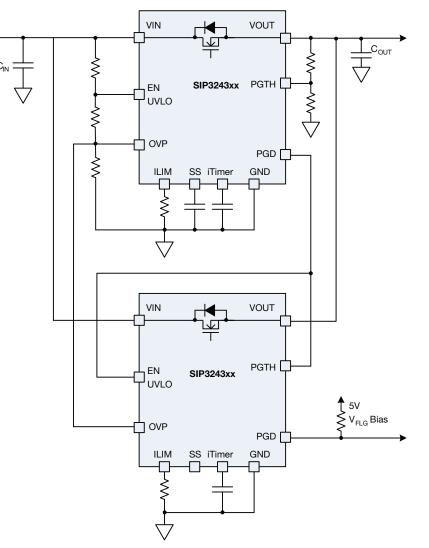


Fig. 53 - Paralleled Two-Device Circuit

Design and Layout

 V_{IN} : It is recommended to put a ceramic decoupling capacitor of 0.1 μ F or higher between V_{IN} and GND. For the best result, it should be closest to the IN and GND terminals.

 V_{OUT} : It is recommended to put a ceramic decoupling capacitor of 1 μ F or higher between V_{OUT} and GND. It should be closest to the device to minimize the loop formed by this capacitor.

GND: The GND terminal must be connected to the PCB ground plane with the shortest path. To provide a clean GND for eFuse performance, it is recommended to have a separate GND path for this chip to minimize the GND current.

PCB: The high current path must be as short as possible, and its trace design must accommodate a minimum of 2x the maximum load current.

S24-1303-Rev. A, 06-Jan-2025	30	Document Number: 61536	
For technical questions, contact: powerictechsupport@vishay.com			

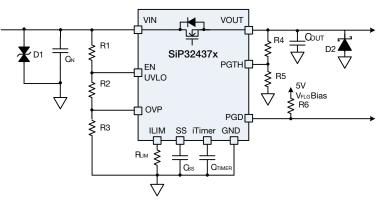


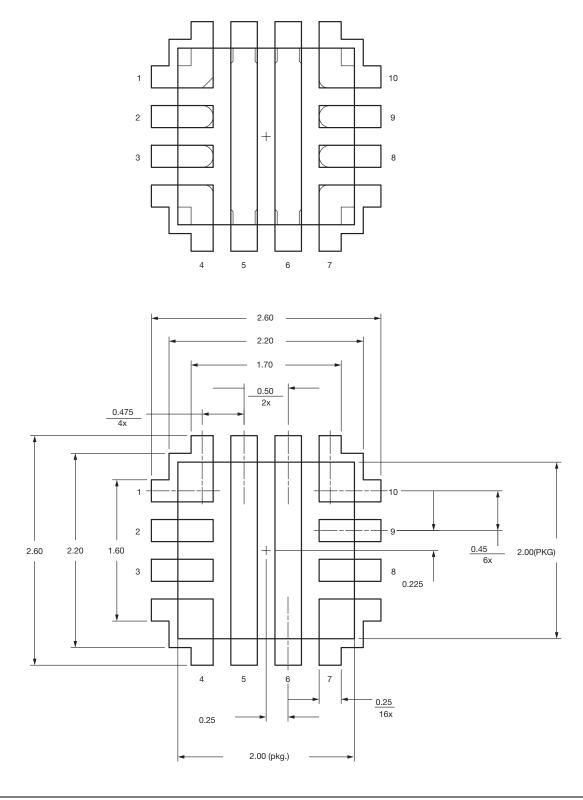
Fig. 54 - Circuit Design With Protection Devices

Thermal: the IN and OUT terminals are the two long leads that provide paths for heat dissipation. Maximize the copper area connected to these pins. The vias can also be implemented to optimize even current distribution and enhance heat dissipation.

Device setting pins: position the eFuse R and C components as close as possible to their related function setting pins with the shortest paths. The other ends of those R and C components are connected to GND. ILIM, SS, and ITIMER are analog signals sensitive to noise. The traces must be short and low noise.

Transient protections: to protect the device from possible over stress during a circuit transient, various protection devices such as TVS, Schottky diodes, snubbers, and capacitors can be placed on the IN and OUT pins. They must be placed as close as possible to the device to minimize parasitic inductance on the power path.

PRODUCT SUMMARY			
Part number	SiP32435	SiP32436	SiP32437
Description	8 A, 2.7 V to 23 V, 9.2 mΩ eFuse With Transient Over Current Blanking, Adjustable OVP, and Active Current Clamping	8 A, 2.7 V to 23 V, 9.2 mΩ eFuse With Transient Over Current Blanking, Selected OVP Clamping, and Active Current Clamping	8 A, 2.7 V to 23 V, 9.2 mΩ eFuse With Transient Over Current Blanking, Adjustable OVP, and Circuit Breaker
Configuration	Single	Single	Single
Slew rate time (µs)	Adjustable	Adjustable	Adjustable
On delay time (µs)	865	655	655
Input voltage min. (V)	2.7	2.7	2.7
Input voltage max. (V)	23	23	23
On-resistance at input voltage min. (m Ω)	14	14	14
On-resistance at input voltage max. (m Ω)	9.5	9.5	9.5
Quiescent current at input voltage min. (μΑ)	400	400	400
Quiescent current at input voltage max. (µA)	400	400	400
Output discharge (yes / no)	No	No	No
Reverse blocking (yes / no)	No	No	No
Continuous current (A)	8	8	8
Package type	TDFN10-22	TDFN10-22	TDFN10-22
Package size (W, L, H) (mm)	2.0 x 2.0 x 0.75	2.0 x 2.0 x 0.75	2.0 x 2.0 x 0.75
Status code			
Product type	Slew rate, current limit	Slew rate, current limit	Slew rate, current limit
Applications	Computers, consumer, industrial, healthcare, networking, portable	Computers, consumer, industrial, healthcare, networking, portable	Computers, consumer, industrial, healthcare, networking, portable


Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package / tape drawings, part marking, and reliability data, see <u>www.vishay.com/ppg?61536</u>.

PAD Pattern

Vishay Siliconix

Recommended Land Pattern TDFN10-22

ECN: E24-0247-Rev. A, 26-Aug-2024 DWG: 3029

Revision: 26-Aug-2024

For technical questions, contact: powerictechsupport@vishay.com

Document Number: 61590

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Vishay products are not designed for use in life-saving or life-sustaining applications or any application in which the failure of the Vishay product could result in personal injury or death unless specifically qualified in writing by Vishay. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

© 2025 VISHAY INTERTECHNOLOGY, INC. ALL RIGHTS RESERVED

Revision: 01-Jan-2025