Selection of MOSFETs for DC/DC Synchronous Buck Controllers: SiP12201 Single 10 A Controller and SiP12203 Triple Step Down Controller IC for 2 Synchronous and 1 Linear Power Rail

Simon Foley

This application note is intended to help designers select the best MOSFETs to use with the SiP12201 and SiP12203 synchronous buck dc-to-dc controller ICs.

The SiP12201 is a single 10 A controller (fig. 1a). The SiP12203 is a triple step down controller IC for 2 synchronous and 1 linear power rail (fig. 1b). Both a have an input voltage range of 4.2 V to 26 V, an output voltage range of 0.6 V to 20 V, and a 500 kHz fixed switching frequency. The dead time and MOSFET driving capabilities of both ICs are similar as well. Thus the choice of MOSFETs for a particular dc-to-dc conversion application will be similar for each IC.
Selection of MOSFETs for DC/DC Synchronous Buck Controllers: SiP12201 Single 10 A Controller and SiP12203 Triple Step Down Controller IC for 2 Synchronous and 1 Linear Power Rail

For the most efficient solution (duty cycle \(\delta \) < 0.5), the high-side MOSFET would have the lowest \(Q_g \) and \(Q_{gd} \) rating (for the lowest VI power losses) and the low-side MOSFET would have the lowest \(R_{DS(on)} \) and \(Q_r \) rating (for the lowest IR losses). When the duty cycle is 0.5 then the \(R_{DS(on)} \) and \(Q_g \) values would be the same. However, this is not always practical, and the selection of high- and low-side MOSFETs thus depends on five key factors - input voltage, efficiency, size, output current, and cost. AN607 and AN608 covers gate losses and the switching characteristics of MOSFETs extensively.

1. **Input voltage** - this determines the max. \(V_{DS} \) of MOSFET needed.
 - 5 V input - \(V_{DS} = 12 \) V or 20 V needed
 - 12 V input - \(V_{DS} = 20 \) V, 25 V, or 30 V needed etc.....

2. **Efficiency** - switching loses VI losses \((Q_{gd}) \) and conduction losses IR losses \((R_{DS(on)}) \). This is covered comprehensively in Vishay's application note AN607.

3. **Size** - this depends on the current output, duty cycle and thermal properties of the MOSFET \((R_{(thj-c)}) \) and pcb board \((R_{(thj-a)}) \).

4. **Output current** - this determines the package and \(R_{DS(on)} \) needed and is covered below in "Choosing the Correct MOSFET" below.

5. **Cost** - this depends on the package, die size, and production volume.

CHOOSING THE CORRECT MOSFETS

Once the MOSFET \(V_{DS} \) is chosen from the input voltage range, there is now a huge range of MOSFETs to choose from. To narrow the choice, follow these steps, each of which is described in further detail below:

1. Calculate the current requirement of the high- and low-side MOSFET. This will give an idea of smallest package needed.
2. Consider and calculate the thermal values from junction to ambient.
3. Calculate the maximum \(R_{DS(on)} \) for the MOSFET at the required \(V_{GS} \), for the current handling required.
4. Considering \(Q_g, Q_{gs}, Q_{gd} \) ratings for the high side MOSFET Q1.
5. Determine requirements for shoot-through immunity.
6. Choose a device that improves efficiency at higher
switching frequencies and light loads.

1. Calculating the Current Requirement of the MOSFET:
 High Side (Q1) and Low Side (Q2)
Consider 12 V is converted to 3 V out at 10 A.

A. Calculating the Duty Cycle:
 \[V_{OUT} = V_{IN} \times \frac{t_{on}}{T} = V_{IN} \delta \]
e.g. a 12 V input with 3 V output would have a \(\delta = 0.25 \)

B. Calculating the Current Requirement of the MOSFET:
 High-side (controlling MOSFET) Q1 RMS current requirement = \(Io \sqrt{\delta} \)
e.g. RMS current = 10 A x \(\sqrt{0.25} = 5 \) A
 Low-side (freewheel MOSFET) Q2 RMS current requirement = \(Io \sqrt{1-\delta} \)
e.g. RMS current = 10A x \(\sqrt{1 - 0.25} = 8.66 \) A
From this we can see that the smaller the duty cycle, the less
RMS current the high-side MOSFET and the more the
low-side MOSFET needs to handle.
The RMS current requirement will give you an idea of the
package needed. The following specifications are package
limited:
- 60 A = PowerPAK® SO-8 and PolarPAK®50 A = PowerPAK
 1212-8
- 12 A = PowerPAK ChipFET®

2. Consider and Calculate the Thermal Values from
 Junction To Ambient
Junction to ambient thermal rating (Rth(j-a)) is the sum of the
thermal rating junction to case (Rth(j-c)) and case to ambient
(Rth(c-a)). Rth(c-a) can be found on the MOSFET datasheet.
This rating is fixed. However, the Rth(j-a) depends on the pcb
and amount of copper used. The lower the Rth(j-a), the more
current and more power dissipation the MOSFET can
handle.¹
¹The only figures that are *arbitrary* are when manufacturers
use different Rth(j-a) for calculations. Although nominally
based on the data sheet on a 1" copper PCB variation in this
value is often seen. The only true thermal (Rth) figures to
compare different MOSFETs is the junction to case rating
(Rth(j-c)).

3. Calculating the Max. RDS(on) at the required VGS
The choice of RDS(on) value will depend on your requirements
for efficiency, cost, and size. The lower the RDS(on), the
higher the cost of the MOSFET, but the more efficient the
dc-to-dc conversion. The bigger the package, the bigger the
die which can fit into the package and therefore the bigger
packages have the lowest RDS(on) ratings.
We first need to calculate the highest RDS(on) for the
application and consider that a lower RDS(on) will offer a more
efficient solution.

\[R_{DS(on)} \text{ max.} = \frac{t_{j} - t_{a}}{I_{2} \text{ max.} \times RK \times R_{th(j-a)} \times \delta \times K} \text{(duty cycle constant)} \]
For a rough RDS(on) this calculation can be used:
\[R_{DS(on)} \text{ max.} = \frac{t_{j} - t_{a}}{I_{2} \text{ max.} \times 1.7 \times R_{th(j-a)}} \]
A. \(T_{\text{amb}} \) = ambient temperature (usually 25 °C for
calculation)
B. \(RK \) = increase in RDS(on) factor with respect to
temperature (normally 1.6 to 1.8) (fig. 2).
C. \(R_{th(j-a)} \) = thermal impedance junction to ambient for the
MOSFET - controlled by package type and pcb (Rth(c-a)).
 There is a typical Rth(j-a) depending on the package
 preferred (fig. 3). Vishay recommends using the max.
 Rth(j-a) steady-state, to allow a safety margin.
D. \(\delta \text{ K} \) = normal thermal impedance duty cycle constant
 depending on pulse duration (fig. 4).
Selection of MOSFETs for DC/DC Synchronous Buck Controllers: SiP12201 Single 10 A Controller and SiP12203 Triple Step Down Controller IC for 2 Synchronous and 1 Linear Power Rail

THERMAL RESISTANCE RATINGS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>TYPICAL</th>
<th>MAXIMUM</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Junction-to-Ambient</td>
<td>R_{thJA}</td>
<td>19</td>
<td>24</td>
<td>°C/W</td>
</tr>
<tr>
<td>Maximum Junction-to-Case (Drain) Steady State</td>
<td>R_{thJC}</td>
<td>1.2</td>
<td>1.8</td>
<td></td>
</tr>
</tbody>
</table>

Considering 12 V is converted to 3 V out at 10 A (50 °C ambient) and the low-side (freewheel MOSFET) RMS current requirement is 8.66 A

$$R_{DS(on)} \text{ max.} = \frac{150 - 50}{75 \times 1.7 \times 24}$$

$$R_{DS(on)} \text{ max.} = 32.7 \text{ mΩ}$$

4. Using Gate Charge to Determine Switching Time

Looking at the gate charge waveform in fig. 5, Q_{gs} is defined as the charge from the origin, to the start of the Millar Plateau V_{GP}. Q_{gd} is defined as the charge from V_{GP} to the end of the plateau. Q_{g} is defined from the origin, to the point on the curve at which the driving voltage equals the actual gate voltage of the device.

The rise in V_{DS} during t_2 (fig. 5) is brought about by charging C_{gs} and C_{gd}. During this time V_{DS} does not change and as such C_{gd} and C_{gs} stay relatively constant, since they vary as a function of V_{DS}. At this time C_{gs} is generally larger than C_{gd} and therefore the majority of the drive current flows into C_{ds} rather than into C_{gd}. This current through C_{gd} and C_{ds} depends on the time derivative of the product of the capacitance and its voltage. The gate charge can therefore be assumed to be Q_{gs}.

The next part of the waveform is the Miller Plateau. It is generally accepted that the point at which the gate charge figure goes into the plateau region coincides with the peak value of the peak current. However, the knee in the gate charge depends on the product of $C_{gd}V_{gd} = Q_{gd}$, with respect to time. This means that there is a very small value of drain current and a large value of output impedance; thus the I_{DS} can actually reach its maximum value after the knee occurs.

Once the plateau is finished (when V_{DS} reaches its on-state value), C_{gd} becomes constant again and the bulk of the
Selection of MOSFETs for DC/DC Synchronous Buck Controllers: SiP12201 Single 10 A Controller and SiP12203 Triple Step Down Controller IC for 2 Synchronous and 1 Linear Power Rail

current flows into C_{gs} again. The gradient is not as steep as it was in the first period (t_2), because C_{gd} is much larger and closer in magnitude to that of $C_{gs}.$

6. Improving Efficiency at Higher Switching Frequencies and Light Loads

There is a demand for higher efficiency in point-of-load (POL) converters, especially at higher switching frequencies and light loads. One solution is to use a low-side MOSFET in parallel with a Schottky diode. This allows the current to flow through the diode before the low-side MOSFET turns on, reducing the losses of the body drain diode (bld) in the MOSFET.

Vishay's SkyFET® Power MOSFETs combine the MOSFET and Schottky in one monolithic die, with two major benefits over two-component (MOSFET and Schottky) solutions. First, the power losses associated with the reverse-recovery current in the low-side MOSFET are defined as $V_{IN} \times Q_{rr} \times f_{SW}.$ Therefore a reduction in Q_{rr} (reverse recovery charge) reduces the power losses, proportional to the switching frequency. The Q_{rr} of Vishay Siliconix SkyFETs is about 40% lower than traditional trench MOSFETs.

Second, there is a time when the transformer current travels through the bld, before the low-side MOSFET turns on. At this time, there will be power losses in the diode ($P = VI$). Reducing the V_F of the body drain diode, reduces this power loss. Vishay's SkyFETs offer a 38% reduction in V_F to 0.44 V, compared to 0.72 V for a standard TrenchFET.

At a 300 kHz switching frequency, the Si4624DY SkyFET, used as a low-side MOSFET, delivers improved efficiency compared to a standard trench MOSFET. (Fig. 8).

Figure 9 highlights the improvement of efficiency at 550 kHz.
Selection of MOSFETs for DC/DC Synchronous Buck Controllers: SiP12201 Single 10 A Controller and SiP12203 Triple Step Down Controller IC for 2 Synchronous and 1 Linear Power Rail

Fig. 9 - MOSFET with Integrated Schottky as Low Side Switch Efficiency Performance Comparison, 550 kHz

Vin = 19 V, VOut = 1.3 V

<table>
<thead>
<tr>
<th>MOSFET</th>
<th>Device</th>
<th>Config.</th>
<th>VDS (V)</th>
<th>VGS (V)</th>
<th>RDS(ON) MAX. AT VG (mΩ)</th>
<th>Qg TYP. AT 4.5 V (nC)</th>
<th>QGS TYP. (nC)</th>
<th>QGD TYP. (nC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si7994DP PowerPAK SO8</td>
<td>High Side</td>
<td>30</td>
<td>20</td>
<td>33</td>
<td>5</td>
<td>2.3</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>Si7994DP PowerPAK 1212-8</td>
<td>Low Side</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Si7218DN PowerPAK SO8</td>
<td>High Side</td>
<td>30</td>
<td>20</td>
<td>33</td>
<td>5</td>
<td>2.3</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>Si7218DN PowerPAK 1212-8</td>
<td>Low Side</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Si4816BDY SO8</td>
<td>High Side</td>
<td>30</td>
<td>20</td>
<td>22.5</td>
<td>7.8</td>
<td>2.9</td>
<td>2.3</td>
<td></td>
</tr>
<tr>
<td>Si4816BDY</td>
<td>Low Side and Schottky</td>
<td>30</td>
<td>20</td>
<td>16</td>
<td>11.4</td>
<td>4.8</td>
<td>3.7</td>
<td></td>
</tr>
<tr>
<td>Si4618DY SO8</td>
<td>High Side</td>
<td>30</td>
<td>12</td>
<td>19.5</td>
<td>12.5</td>
<td>4.1</td>
<td>3.4</td>
<td></td>
</tr>
<tr>
<td>Si4618DY</td>
<td>Low Side and Schottky</td>
<td>30</td>
<td>12</td>
<td>11.5</td>
<td>17</td>
<td>5.6</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Si4622DY SO8</td>
<td>High Side</td>
<td>30</td>
<td>20</td>
<td>18.6</td>
<td>19</td>
<td>8</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Si4622DY</td>
<td>Low Side SKYFET</td>
<td>30</td>
<td>16</td>
<td>29</td>
<td>6</td>
<td>2.1</td>
<td>1.4</td>
<td></td>
</tr>
<tr>
<td>Si4618DY SO8</td>
<td>High Side</td>
<td>30</td>
<td>20</td>
<td>22</td>
<td>10.5</td>
<td>5</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>Si4618DY</td>
<td>Low Side and Schottky</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>