PRODUCT SUMMARY

<table>
<thead>
<tr>
<th>V_{DS} (V)</th>
<th>$R_{DS(on)}$ (Ω)</th>
<th>I_D (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>± 7</td>
<td>0.170 at $V_{GS} = -4.5$ V</td>
<td>± 2.4</td>
</tr>
<tr>
<td></td>
<td>0.240 at $V_{GS} = -2.5$ V</td>
<td>± 2.0</td>
</tr>
</tbody>
</table>

FEATURES

- Halogen-free According to IEC 61249-2-21 Definition
- Low $R_{DS(on)}$ Symmetrical P-Channel MOSFET
- Integrated Body Bias For Bi-Directional Blocking
- 2.5 V to 5.5 V Operation
- Exceeds ± 2 kV ESD Protected
- Solution for High-Side Battery Disconnect Switching (BDS)
- Supports Battery Switching in Multiple Battery Cell Phones, PDAs and PCS Products
- Low Profile, Small Footprint TSOP-6 Package
- Compliant to RoHS Directive 2002/95/EC

DESCRIPTION

The Si3831DV is a low on-resistance p-channel power MOSFET providing bi-directional blocking and conduction. Bi-directional blocking is facilitated by combining a 4-terminal symmetric p-channel MOSFET with a body bias selector circuit\(^a\). Circuit operation automatically biases the p-channel body to the most positive source/drain potential thereby maintaining a reverse bias across the diode present between the source/drain terminals. Off-state device blocking characteristics are symmetric, facilitating bi-directional blocking for high-side battery switching in portable products. Gate drive is facilitated by negatively biasing the gate relative to the body potential. The off-state is achieved by biasing the gate to the most positive supply voltage or to the body potential. The Si3831DV is available in a 6-pin TSOP-6 package rated for the -25 °C to 85 °C commercial temperature range.

APPLICATION CIRCUITS

Note:

\(^a\) Patents pending.
FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

![Functional Block Diagram](image)

Notes:
- Bi-directional.
- Surface Mounted on FR4 board, $t \leq 5$ s.
- Surface Mounted on FR4 board, Steady-State.

Figure 3.

TSOP-6 Top View

Figure 4.

Ordering Information:
- Si3831DV-T1-E3 (Lead (Pb)-free)
- Si3831DV-T1-GE3 (Lead (Pb)-free and Halogen-free)

ABSOLUTE MAXIMUM RATINGS $T_A = 25 \degree C$, unless otherwise noted

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Limit</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain-Source Voltage, Source-Drain Voltagea</td>
<td>V_{DS}</td>
<td>- 7.0 to + 7.0</td>
<td>V</td>
</tr>
<tr>
<td>Source-Body, Drain-Body, Gate-Body Voltage</td>
<td>V_{SB}, V_{DB}, V_{GB}</td>
<td>0.3 to - 7.0</td>
<td></td>
</tr>
<tr>
<td>Body-Substrate Voltage</td>
<td>V_{BSUB}</td>
<td>+ 7.0 to - 0.3</td>
<td></td>
</tr>
<tr>
<td>Continuous Drain-to-Source Current ($T_J = 150 \degree C$)$^{a, b}$</td>
<td>I_D</td>
<td>± 2.4</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>± 2.0</td>
<td></td>
</tr>
<tr>
<td>Pulsed Drain-to-Source Currenta</td>
<td>I_{DM}</td>
<td>± 8</td>
<td></td>
</tr>
<tr>
<td>Maximum Power Dissipationb</td>
<td>P_D</td>
<td>1.5</td>
<td>W</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Operating Junction and Storage Temperature Range</td>
<td>T_J, T_{stg}</td>
<td>- 55 to 150</td>
<td>\degree C</td>
</tr>
</tbody>
</table>

RECOMMENDED OPERATING RANGE

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Range</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain-Source Voltagea</td>
<td>V_{DS}</td>
<td>- 5.5 to 5.5</td>
<td>V</td>
</tr>
<tr>
<td>Gate-Drain, Gate-Source Voltage</td>
<td>V_{GD}, V_{GS}</td>
<td>0 to - 5.5</td>
<td></td>
</tr>
<tr>
<td>Source-Body, Drain-Body, Gate-Body Voltage</td>
<td>V_{SB}, V_{DB}, V_{GB}</td>
<td>0 to - 5.5</td>
<td></td>
</tr>
<tr>
<td>Drain-to-Source Current$^b, c$</td>
<td>I_{DS}</td>
<td>± 2.4</td>
<td>A</td>
</tr>
<tr>
<td>Body-Source Current</td>
<td>I_{BS}</td>
<td>0 to 10</td>
<td>\mu A</td>
</tr>
</tbody>
</table>

THERMAL RESISTANCE RATINGS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Limit</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Junction-to-Ambientb</td>
<td>R_{JA}</td>
<td>80</td>
<td>\degree C/W</td>
</tr>
<tr>
<td></td>
<td></td>
<td>125</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- a. Bi-directional.
- b. Surface Mounted on FR4 board, $t \leq 5$ s.
- c. Surface Mounted on FR4 board, Steady-State.
Si3831DV
Vishay Siliconix

SPECIFICATIONS $V_{BS} = 0 \text{ V}, \; T_J = 25 \degree \text{C}$, unless otherwise noted

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Test Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate Threshold Voltage</td>
<td>$V_{GS(th)}$</td>
<td>$V_{DS} = V_{GS}, ; I_D = - 250 \mu A$</td>
<td>- 0.4</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Gate-Body Leakage</td>
<td>I_{GSS}</td>
<td>$V_{DS} = 0 \text{ V}, ; V_{GS} = - 5.5 \text{ V} \text{ to } + 0.3 \text{ V}$</td>
<td>± 100</td>
<td></td>
<td></td>
<td>nA</td>
</tr>
<tr>
<td>Zero Gate Voltage Drain Current</td>
<td>I_{DSS}</td>
<td>$V_{DS} = - 5.5 \text{ V}, ; V_{GS} = 0 \text{ V}, ; V_{SB} = 0 \text{ V}$</td>
<td>- 1</td>
<td></td>
<td></td>
<td>\mu A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{DS} = - 5.5 \text{ V}, ; V_{GS} = 0 \text{ V}, ; V_{SB} = 0 \text{ V}, ; T_J = 70 \degree \text{C}$</td>
<td>- 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>On-State Drain Currenta</td>
<td>$I_D(on)$</td>
<td>$V_{DS} = - 3 \text{ V}, ; V_{GS} = - 4.5 \text{ V}$</td>
<td>- 8</td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{DS} = - 3 \text{ V}, ; V_{GS} = - 2.5 \text{ V}$</td>
<td></td>
<td></td>
<td>- 3</td>
<td></td>
</tr>
<tr>
<td>Drain-Source On-State Resistancea</td>
<td>$R_{DS(on)}$</td>
<td>$V_{GS} = - 4.5 \text{ V}, ; I_D = - 2.4 \text{ A}$</td>
<td>0.130</td>
<td>0.170</td>
<td></td>
<td>\Omega</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{GS} = - 2.5 \text{ V}, ; I_D = - 2.0 \text{ A}$</td>
<td>0.180</td>
<td>0.240</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dynamicb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Gate Charge</td>
<td>Q_g</td>
<td>$V_{DS} = - 5 \text{ V}, ; V_{GS} = - 4.5 \text{ V}, ; I_D = - 2.4 \text{ A}$</td>
<td>2.0</td>
<td>4.0</td>
<td></td>
<td>nC</td>
</tr>
<tr>
<td>Gate-Source Charge</td>
<td>Q_{gs}</td>
<td></td>
<td>0.23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate-Drain Charge</td>
<td>Q_{gd}</td>
<td></td>
<td>0.14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-On Delay Time</td>
<td>$t_{(on)}$</td>
<td></td>
<td>12</td>
<td>25</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Rise Time</td>
<td>t_r</td>
<td>$V_{DD} = - 3 \text{ V}, ; R_L = 3 \Omega$</td>
<td>55</td>
<td>110</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-Off Delay Time</td>
<td>$t_{(off)}$</td>
<td>$I_D = - 1.0 \text{ A}, ; V_{GEN} = - 4.5 \text{ V}, ; R_g = 6 \Omega$</td>
<td>90</td>
<td>180</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall Time</td>
<td>t_f</td>
<td></td>
<td>85</td>
<td>170</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

a. Pulse test; pulse width $\leq 300 \mu \text{ s}$, duty cycle $\leq 2 \%$.
b. Guaranteed by design, not subject to production testing.

Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

GATE BUFFER REFERENCE

Figure 5. Gate Buffer Referenced to Most Positive Supply

Figure 6. Gate Buffer Referenced to Body Bias Pin
TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted

Output Characteristics

- **On-Resistance vs. Drain Current**
 - V_{DS} - Drain-to-Source Voltage (V)
 - I_D - Drain Current (A)
 - $V_{GS} = 5 \text{ V} \text{ thru } 3 \text{ V}$
 - 1.5 V
 - 2 V
 - 2.5 V

Gate Charge

- Q_g - Total Gate Charge (nC)
- $V_{GS} = 4.5 \text{ V}$
- $I_D = 2.4 \text{ A}$

Transfer Characteristics

- **Capacitance**
 - V_{DS} - Drain-to-Source Voltage (V)
 - C - Capacitance (pF)
 - $V_{GS} = 4.5 \text{ V}$
 - $I_D = 2.4 \text{ A}$

On-Resistance vs. Junction Temperature

- $R_{DS(on)}$ - On-Resistance (Ω)
- T_J - Junction Temperature (°C)
- $V_{GS} = 4.5 \text{ V}$
- $I_D = 2.4 \text{ A}$

Capacitance

- C_{GSS}, C_{ISS}, C_{RSS}

www.vishay.com

Document Number: 70785

S09-2276-Rev. D, 02-Nov-09
TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted

Source-Drain Diode Forward Voltage

- **Threshold Voltage**
 - V_{SD}: Source-to-Drain Voltage (V)
 - I_S: Source Current (A)
 - T_J: Temperature (°C)

- **Normalized Effective Transient Thermal Impedance**
 - **Normalized Thermal Transient Impedance, Junction-to-Ambient**

- **On-Resistance vs. Gate-to-Source Voltage**
 - $R_{DS(on)}$: On-Resistance (Ω)
 - V_{GS}: Gate-to-Source Voltage (V)

- **Single Pulse Power**
 - P_{DM}: Power (W)
 - D: Duty Cycle
 - P_{Ja}: Per Unit Base = $R_{thJA} = 80$ °C/W
 - T_JM: $T_A = P_{DM}C_JA$ (°)

Notes:
1. Surface Mounted
2. Per Unit Base = $R_{thJA} = 80$ °C/W
3. $T_JM - T_A = P_{DM}C_JA$
4. Surface Mounted
Si3831DV
Vishay Siliconix

TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted

![Graph showing Bi-Directional Blocking Drain-Source Voltage](image-url)

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?70785.
Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay’s knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer’s responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer’s technical experts. Product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.