Complementary MOSFET Half-Bridge (N- and P-Channel)

PRODUCT SUMMARY

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>N-Channel</th>
<th>P-Channel</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain-Source Voltage</td>
<td>V_{DS}</td>
<td>20</td>
<td>-20</td>
<td>V</td>
</tr>
<tr>
<td>Gate-Source Voltage</td>
<td>V_{GS}</td>
<td>±12</td>
<td>±12</td>
<td>V</td>
</tr>
<tr>
<td>Continuous Drain Current (T$_{J}$ = 25°C)</td>
<td>I_D</td>
<td>±6.0</td>
<td>±4.5</td>
<td>A</td>
</tr>
<tr>
<td>Continuous Drain Current (T$_{J}$ = 70°C)</td>
<td>I_D</td>
<td>±35.5</td>
<td>±20</td>
<td>A</td>
</tr>
<tr>
<td>Pulsed Drain Current</td>
<td>I_{DM}</td>
<td>±30</td>
<td>±30</td>
<td>A</td>
</tr>
<tr>
<td>Continuous Source Current (Diode Conduction)</td>
<td>I_S</td>
<td>1.7</td>
<td>-1.7</td>
<td>A</td>
</tr>
<tr>
<td>Maximum Power Dissipation</td>
<td>P_D</td>
<td>2.5</td>
<td>1.6</td>
<td>W</td>
</tr>
<tr>
<td>Operating Junction and Storage Temperature Range</td>
<td>T_J, T_{Stg}</td>
<td>-55 to 150</td>
<td>-55 to 150</td>
<td>°C</td>
</tr>
</tbody>
</table>

ABSOLUTE MAXIMUM RATINGS (T$_{A}$ = 25°C UNLESS OTHERWISE NOTED)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>N-Channel</th>
<th>P-Channel</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Junction-to-Ambient(a,b)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steady-State</td>
<td></td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steady-State</td>
<td></td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steady-State</td>
<td></td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steady-State</td>
<td></td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steady-State</td>
<td></td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steady-State</td>
<td></td>
<td>22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steady-State</td>
<td></td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steady-State</td>
<td></td>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Notes</td>
<td></td>
<td>a. Surface Mounted on FR4 Board. b. t ≤ 10 sec</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SPECIFICATIONS (T_J = 25°C UNLESS OTHERWISE NOTED)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Test Condition</th>
<th>Min</th>
<th>Typ<sup>a</sup></th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate Threshold Voltage</td>
<td>(V_{GS(th)})</td>
<td>(V_{DS} = V_{GS}, I_D = 250 \mu A)</td>
<td>N-Ch</td>
<td>0.6</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{DS} = V_{GS}, I_D = -250 \mu A)</td>
<td>P-Ch</td>
<td>-0.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate-Body Leakage</td>
<td>(I_{GSS})</td>
<td>(V_{DS} = 0 \text{ V}, V_{GS} = \pm 12 \text{ V})</td>
<td>N-Ch</td>
<td>±100</td>
<td></td>
<td>nA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{DS} = 16 \text{ V}, V_{GS} = 0 \text{ V})</td>
<td>P-Ch</td>
<td>±100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zero Gate Voltage Drain Current</td>
<td>(I_{DSS})</td>
<td>(V_{DS} = 16 \text{ V}, V_{GS} = 0 \text{ V}, T_J = 55^\circ \text{C})</td>
<td>N-Ch</td>
<td>1</td>
<td></td>
<td>(\mu \text{A})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{DS} = -16 \text{ V}, V_{GS} = 0 \text{ V}, T_J = 55^\circ \text{C})</td>
<td>P-Ch</td>
<td>-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>On-State Drain Current<sup>b</sup></td>
<td>(I_{D(on)})</td>
<td>(V_{DS} = 5 \text{ V}, V_{GS} = 4.5 \text{ V})</td>
<td>N-Ch</td>
<td>30</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{DS} = -5 \text{ V}, V_{GS} = -4.5 \text{ V})</td>
<td>P-Ch</td>
<td>-20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drain-Source On-State Resistance<sup>b</sup></td>
<td>(r_{DSS(on)})</td>
<td>(V_{DS} = 4.5 \text{ V}, I_D = 7.0 \text{ A})</td>
<td>N-Ch</td>
<td>0.022</td>
<td>0.030</td>
<td>(\Omega)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{GS} = -4.5 \text{ V}, I_D = -4.5 \text{ A})</td>
<td>P-Ch</td>
<td>0.058</td>
<td>0.065</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{GS} = 2.5 \text{ V}, I_D = 6.0 \text{ A})</td>
<td>N-Ch</td>
<td>0.030</td>
<td>0.040</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{GS} = -2.5 \text{ V}, I_D = -3.5 \text{ A})</td>
<td>P-Ch</td>
<td>0.087</td>
<td>0.100</td>
<td></td>
</tr>
<tr>
<td>Forward Transconductance<sup>b</sup></td>
<td>(g_fs)</td>
<td>(V_{DS} = 15 \text{ V}, I_D = 7.0 \text{ A})</td>
<td>N-Ch</td>
<td>22</td>
<td></td>
<td>S</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{DS} = -15 \text{ V}, I_D = -4.5 \text{ A})</td>
<td>P-Ch</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diode Forward Voltage<sup>b</sup></td>
<td>(V_{SD})</td>
<td>(I_S = 1.7 \text{ A}, V_{GS} = 0 \text{ V})</td>
<td>N-Ch</td>
<td>0.70</td>
<td>1.2</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(I_S = -1.7 \text{ A}, V_{GS} = 0 \text{ V})</td>
<td>P-Ch</td>
<td>-0.80</td>
<td>-1.2</td>
<td></td>
</tr>
<tr>
<td>Dynamic<sup>a</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Gate Charge</td>
<td>(Q_g)</td>
<td>(V_{DS} = 10 \text{ V}, V_{GS} = 4.5 \text{ V}, I_D = 3.5 \text{ A})</td>
<td>N-Ch</td>
<td>13</td>
<td>25</td>
<td>nC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{DS} = -10 \text{ V}, V_{GS} = -4.5 \text{ V}, I_D = -4.5 \text{ A})</td>
<td>P-Ch</td>
<td>8.5</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Gate-Source Charge</td>
<td>(Q_{gs})</td>
<td>(V_{DS} = 10 \text{ V}, V_{GS} = 4.5 \text{ V}, I_D = 3.5 \text{ A})</td>
<td>N-Ch</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{DS} = -10 \text{ V}, V_{GS} = -4.5 \text{ V}, I_D = -4.5 \text{ A})</td>
<td>P-Ch</td>
<td>2.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate-Drain Charge</td>
<td>(Q_{gd})</td>
<td>(V_{DD} = 10 \text{ V}, R_L = 10 \text{ \Omega})</td>
<td>N-Ch</td>
<td>3.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{DD} = -10 \text{ V}, R_L = 10 \text{ \Omega})</td>
<td>P-Ch</td>
<td>1.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-On Delay Time</td>
<td>(t_{(on)})</td>
<td>(V_{DD} = 10 \text{ V}, R_L = 10 \text{ \Omega})</td>
<td>N-Ch</td>
<td>22</td>
<td>40</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{DD} = -10 \text{ V}, R_L = 10 \text{ \Omega})</td>
<td>P-Ch</td>
<td>15</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Rise Time</td>
<td>(t_r)</td>
<td>(V_{DD} = 10 \text{ V}, R_L = 10 \text{ \Omega})</td>
<td>N-Ch</td>
<td>40</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{DD} = -10 \text{ V}, R_L = 10 \text{ \Omega})</td>
<td>P-Ch</td>
<td>32</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Turn-Off Delay Time</td>
<td>(t_{(off)})</td>
<td>(V_{DD} = 10 \text{ V}, R_L = 10 \text{ \Omega})</td>
<td>N-Ch</td>
<td>50</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{DD} = -10 \text{ V}, R_L = 10 \text{ \Omega})</td>
<td>P-Ch</td>
<td>57</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Fall Time</td>
<td>(t_f)</td>
<td>(V_{DD} = 10 \text{ V}, R_L = 10 \text{ \Omega})</td>
<td>N-Ch</td>
<td>20</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{DD} = -10 \text{ V}, R_L = 10 \text{ \Omega})</td>
<td>P-Ch</td>
<td>40</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>Source-Drain Reverse Recovery Time</td>
<td>(t_{rr})</td>
<td>(I_F = 1.7 \text{ A}, \text{di/dt} = 100 \text{ A/\mu s})</td>
<td>N-Ch</td>
<td>40</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(I_F = -1.7 \text{ A}, \text{di/dt} = 100 \text{ A/\mu s})</td>
<td>P-Ch</td>
<td>40</td>
<td>80</td>
<td></td>
</tr>
</tbody>
</table>

Notes
a. Guaranteed by design, not subject to production testing.
b. Pulse test; pulse width ≤ 300 \mu s, duty cycle ≤ 2%.
TYPICAL CHARACTERISTICS (25°C UNLESS NOTED) N-CHANNEL

Output Characteristics
- V_{DS} - Drain-to-Source Voltage (V)
- I_D - Drain Current (A)
- $V_{GS} = 5$ thru 3 V
- $V_{GS} = 2.5$ V
- $V_{GS} = 2$ V
- $V_{GS} = 1.5$ V

Transfer Characteristics
- V_{GS} - Gate-to-Source Voltage (V)
- I_D - Drain Current (A)
- $T_C = 125°C$
- $25°C$
- $-55°C$

On-Resistance vs. Drain Current
- $r_{DS(on)}$ - On-Resistance (Ω)
- $V_{GS} = 2.5$ V
- $V_{GS} = 4.5$ V

Capacitance
- C - Capacitance (pF)
- C_{oss}
- C_{rss}

Gate Charge
- V_{GS} - Gate-to-Source Voltage (V)
- Q_g - Total Gate Charge (nC)
- $V_{DS} = 10$ V
- $I_D = 4.5$ A

On-Resistance vs. Junction Temperature
- $r_{DS(on)}$ - On-Resistance (Normalized)
- $V_{GS} = 4.5$ V
- $I_D = 4.5$ A
- T_J - Junction Temperature (°C)

Document Number: 70880
S-00269—Rev. A, 26-Apr-99
www.vishay.com • FaxBack 408-970-5600
2-3
Si4500DY
Vishay Siliconix
New Product

**TYPICAL CHARACTERISTICS (25°C UNLESS NOTED)
N-CHANNEL**

Source-Drain Diode Forward Voltage
![Graph showing Source-Drain Diode Forward Voltage](image)

- **V_S – Source Current (A)**
- **V_SD – Source-Drain Voltage (V)**
- **T_J = 150°C**
- **T_J = 25°C**

On-Resistance vs. Gate-to-Source Voltage
![Graph showing On-Resistance vs. Gate-to-Source Voltage](image)

- **ID = 4.5 A**

Threshold Voltage
![Graph showing Threshold Voltage](image)

- **ID = 250 μA**
- **V_SD** – Source-to-Drain Voltage (V)
- **V_GS** – Gate-to-Source Voltage (V)

Single Pulse Power, Junction-To-Ambient
![Graph showing Single Pulse Power, Junction-To-Ambient](image)

- **Power (W)**
- **Time (sec)**

Normalized Thermal Transient Impedance, Junction-to-Ambient
![Graph showing Normalized Thermal Transient Impedance, Junction-to-Ambient](image)

- **Normalized Effective Transient Thermal Impedance**
- **Square Wave Pulse Duration (sec)**

Notes:
1. Duty Cycle, D = \(\frac{t_1}{t_2} \)
2. Per Unit Base = \(R_{th} = 73 \)°C/W
3. \(T_{JM} - T_A = P_{DM} Z_{th} (t) \)
4. Surface Mounted
TYPICAL CHARACTERISTICS (25°C UNLESS NOTED)

N-CHANNEL

Normalized Thermal Transient Impedance, Junction-to-Foot

![Normalized Thermal Transient Impedance](image)

Square Wave Pulse Duration (sec)

Output Characteristics

On-Resistance vs. Drain Current

![On-Resistance vs. Drain Current](image)

P-CHANNEL

Transfer Characteristics

On-Resistance vs. Drain Current

![On-Resistance vs. Drain Current](image)
TYPICAL CHARACTERISTICS (25°C UNLESS NOTED)

Gate Charge

\[V_{GS} = \text{Gate-to-Source Voltage (V)} \]

\[Q_g = \text{Total Gate Charge (nC)} \]

\[V_{DS} = 10 \text{ V} \]

\[I_D = 4.4 \text{ A} \]

On-Resistance vs. Junction Temperature

\[R_{DS(on)} = \text{On-Resistance (Ω)} \]

\[V_{GS} = 4.5 \text{ V} \]

\[I_D = 4.4 \text{ A} \]

Source-Drain Diode Forward Voltage

\[I_S = \text{Source Current (A)} \]

\[V_{SD} = \text{Source-to-Drain Voltage (V)} \]

\[T_J = 150°C \]

\[T_J = 25°C \]

On-Resistance vs. Gate-to-Source Voltage

\[R_{DS(on)} = \text{On-Resistance (Ω)} \]

\[V_{DS} = 10 \text{ V} \]

\[I_D = 4.4 \text{ A} \]

Threshold Voltage

\[V_GS(th) = \text{Threshold Voltage (V)} \]

\[V_{GS} = \text{Gate-to-Source Voltage (V)} \]

\[T_J = 150°C \]

\[T_J = 25°C \]

Single Pulse Power, Junction-To-Ambient

\[P = \text{Power (W)} \]

\[T = \text{Time (sec)} \]

\[V_{GS} = 4.5 \text{ V} \]

\[I_D = 4.4 \text{ A} \]
Normalized Thermal Transient Impedance, Junction-to-Ambient

- Duty Cycle = 0.5

Notes:
1. Duty Cycle, \(D = \frac{I_1}{I_2} \)
2. Per Unit Base = \(R_{thJA} = 73 \degree C/W \)
3. \(T_{JA} - T_A = P_{DM} Z_{thJA}(t) \)
4. Surface Mounted

Square Wave Pulse Duration (sec)

Normalized Effective Transient Thermal Impedance

Normalized Thermal Transient Impedance, Junction-to-Foot

- Duty Cycle = 0.5

Square Wave Pulse Duration (sec)
Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.