FEATURES
- Halogen-free According to IEC 61249-2-21 Definition
- TrenchFET® Power MOSFETs
- 2000 V ESD Protection
- Very Small Footprint
- High-Side Switching
- Low On-Resistance:
 - N-Channel, 0.7 \(\Omega \)
 - P-Channel, 1.2 \(\Omega \)
- Low Threshold: ± 0.8 V (Typ.)
- Fast Switching Speed: 14 ns
- 1.8 V Operation
- Compliant to RoHS Directive 2002/95/EC

BENEFITS
- Ease in Driving Switches
- Low Offset (Error) Voltage
- Low-Voltage Operation
- High-Speed Circuits
- Low Battery Voltage Operation

APPLICATIONS
- Replace Digital Transistor, Level-Shifter
- Battery Operated Systems
- Power Supply Converter Circuits

PRODUCT SUMMARY

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain-Source Voltage</td>
<td>V_{DS}</td>
<td>V</td>
</tr>
<tr>
<td>Gate-Source Voltage</td>
<td>V_{GS}</td>
<td>± 6 V</td>
</tr>
<tr>
<td>Continuous Drain Current (T_{J} = 150 °C)(^a)</td>
<td>I_{D}</td>
<td>mA</td>
</tr>
<tr>
<td>Continuous Source Current (Diode Conduction)(^a)</td>
<td>I_{S}</td>
<td>mA</td>
</tr>
<tr>
<td>Maximum Power Dissipation(^a)</td>
<td>P_{D}</td>
<td>mW</td>
</tr>
<tr>
<td>Operating Junction and Storage Temperature Range</td>
<td>T_{J}, T_{stg}</td>
<td>°C</td>
</tr>
<tr>
<td>Gate-Source ESD Rating (HBM, Method 3015)</td>
<td>ESD</td>
<td>V</td>
</tr>
</tbody>
</table>

SC-89

REFERENCES

Notes:
- Surface mounted on FR4 board.
- Pulse width limited by maximum junction temperature.

Ordering Information: Si1016X-T1-GE3 (Lead (Pb)-free and Halogen-free)
SPECIFICATIONS (T_J = 25 °C, unless otherwise noted)

Static

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Test Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gate Threshold Voltage</td>
<td>V<sub>GS(th)</sub></td>
<td>V<sub>DS</sub> = V<sub>GS</sub>, I<sub>D</sub> = 250 µA</td>
<td>N-Ch</td>
<td>0.45</td>
<td>1</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V<sub>DS</sub> = V<sub>GS</sub>, I<sub>D</sub> = - 250 µA</td>
<td>P-Ch</td>
<td>- 0.45</td>
<td>- 1</td>
<td></td>
</tr>
<tr>
<td>Gate Body Leakage</td>
<td>I<sub>GSS</sub></td>
<td>V<sub>DS</sub> = 0 V, V<sub>GS</sub> ≤ 4.5 V</td>
<td>N-Ch</td>
<td>± 0.5</td>
<td>± 1.0</td>
<td>µA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>P-Ch</td>
<td>± 1.0</td>
<td>± 2.0</td>
<td></td>
</tr>
<tr>
<td>Zero Gate Voltage Drain Current</td>
<td>I<sub>DS</sub></td>
<td>V<sub>DS</sub> = 16 V, V<sub>GS</sub> = 0 V</td>
<td>N-Ch</td>
<td>0.3</td>
<td>100</td>
<td>nA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>P-Ch</td>
<td>0.3</td>
<td>- 100</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>V<sub>DS</sub> = 16 V, V<sub>GS</sub> = 0 V, T<sub>J</sub> = 85 °C</td>
<td>N-Ch</td>
<td>5</td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>P-Ch</td>
<td>- 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>On State Drain Current</td>
<td>I<sub>D(on)</sub></td>
<td>V<sub>DS</sub> = 5 V, V<sub>GS</sub> = 4.5 V</td>
<td>N-Ch</td>
<td>700</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>P-Ch</td>
<td>- 700</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drain-Source On-State Resistance</td>
<td>R<sub>DS(on)</sub></td>
<td>V<sub>DS</sub> = 4.5 V, I<sub>D</sub> = 600 mA</td>
<td>N-Ch</td>
<td>0.41</td>
<td>0.70</td>
<td>Ω</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>P-Ch</td>
<td>0.80</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>V<sub>GS</sub> = 2.5 V, I<sub>D</sub> = 500 mA</td>
<td>N-Ch</td>
<td>0.53</td>
<td>0.85</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>P-Ch</td>
<td>1.20</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>V<sub>GS</sub> = 1.8 V, I<sub>D</sub> = 350 mA</td>
<td>N-Ch</td>
<td>0.70</td>
<td>1.25</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>P-Ch</td>
<td>1.80</td>
<td>2.7</td>
<td></td>
</tr>
<tr>
<td>Forward Transconductance</td>
<td>g<sub>FS</sub></td>
<td>V<sub>DS</sub> = 10 V, I<sub>D</sub> = 400 mA</td>
<td>N-Ch</td>
<td>1.0</td>
<td></td>
<td>S</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>P-Ch</td>
<td>0.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diode Forward Voltage</td>
<td>V<sub>SD</sub></td>
<td>I<sub>DS</sub> = 150 mA, V<sub>GS</sub> = 0 V</td>
<td>N-Ch</td>
<td>0.8</td>
<td>1.2</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>P-Ch</td>
<td>- 0.8</td>
<td>- 1.2</td>
<td></td>
</tr>
</tbody>
</table>

Dynamic

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Test Conditions</th>
<th>N-Ch</th>
<th>P-Ch</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Gate Charge</td>
<td>Q<sub>G</sub></td>
<td>V<sub>DS</sub> = 10 V, V<sub>GS</sub> = 4.5 V, I<sub>D</sub> = 250 mA</td>
<td>750</td>
<td></td>
<td>pC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V<sub>DS</sub> = - 10 V, V<sub>GS</sub> = - 4.5 V, I<sub>D</sub> = - 250 mA</td>
<td>1500</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gate-Source Charge</td>
<td>Q<sub>GS</sub></td>
<td>V<sub>DS</sub> = 10 V, V<sub>GS</sub> = 4.5 V, I<sub>D</sub> = 250 mA</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>V<sub>DS</sub> = - 10 V, V<sub>GS</sub> = - 4.5 V, I<sub>D</sub> = - 250 mA</td>
<td>150</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gate-Drain Charge</td>
<td>Q<sub>GD</sub></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Turn-On Time</td>
<td>t<sub>ON</sub></td>
<td>V<sub>DD</sub> = 10 V, R<sub>L</sub> = 47 Ω</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>I<sub>D</sub> = 200 mA, V<sub>GEN</sub> = 4.5 V, R<sub>G</sub> = 10 Ω</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Turn-Off Time</td>
<td>t<sub>OFF</sub></td>
<td>V<sub>DD</sub> = 10 V, R<sub>L</sub> = 47 Ω</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>I<sub>D</sub> = 200 mA, V<sub>GEN</sub> = 4.5 V, R<sub>G</sub> = 10 Ω</td>
<td>35</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- a. Pulse test; pulse width ≤ 300 µs, duty cycle ≤ 2 %.
- b. Guaranteed by design, not subject to production testing.

Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
N-CHANNEL TYPICAL CHARACTERISTICS (\(T_A = 25 \, ^\circ\mathrm{C}\), unless otherwise noted)

Output Characteristics

- **On-Resistance vs. Drain Current**
 - \(V_GS = 5 \, \text{V through } 1.8 \, \text{V}\)

Transfer Characteristics

- **Capacitance**
 - \(V_GS = 1.8 \, \text{V}\)
 - \(V_GS = 2.5 \, \text{V}\)
 - \(V_GS = 4.5 \, \text{V}\)

- **On-Resistance vs. Junction Temperature**
 - \(T_J = -55 \, \text{°C}\)
 - \(25 \, \text{°C}\)
 - \(125 \, \text{°C}\)

Gate Charge

- \(V_GS = 10 \, \text{V}\)
 - \(I_D = 250 \, \text{mA}\)

On-Resistance vs. Junction Temperature

- \(V_GS = 4.5 \, \text{V}\)
 - \(I_D = 350 \, \text{mA}\)
- \(V_GS = 1.8 \, \text{V}\)
 - \(I_D = 150 \, \text{mA}\)
N-CHANNEL TYPICAL CHARACTERISTICS \(T_A = 25 \, ^\circ C \), unless otherwise noted

- **Source-Drain Diode Forward Voltage**
 - Graph showing source-drain voltage \(V_{SD} \) vs. source current \(I_S \) for different temperature levels: \(T_J = 125 \, ^\circ C \), \(T_J = 25 \, ^\circ C \), and \(T_J = 50 \, ^\circ C \).

- **On-Resistance vs. Gate-to-Source Voltage**
 - Graph showing on-resistance \(R_{D\,on} \) vs. gate-to-source voltage \(V_{GS} \) for different currents: \(I_D = 350 \, mA \) and \(I_D = 200 \, mA \).

- **Threshold Voltage Variance vs. Temperature**
 - Graph showing threshold voltage variance \(V_{GS\,(th)} \) vs. temperature \(T_J \) with \(I_D = 0.25 \, mA \).

- **BVGS vs. Temperature**
 - Graph showing gate-to-source breakdown voltage \(BV_{GSS} \) vs. temperature \(T_J \).
P-CHANNEL TYPICAL CHARACTERISTICS (\(T_A = 25 \, ^\circ\text{C}\), unless otherwise noted)

Output Characteristics

On-Resistance vs. Drain Current

- **\(V_{DS}\) - Drain-to-Source Voltage (V)**
- **\(I_D\) - Drain Current (A)**
- **\(V_{GS}\) = 5 V thru 3 V**
- **\(2.5\) V**
- **\(2\) V**
- **\(1.8\) V**

Transfer Characteristics

Capacitance

- **\(V_{GS}\) - Gate-to-Source Voltage (V)**
- **\(C\) - Capacitance (pF)**
- **\(V_{GS} = 0\) V**
- **\(f = 1\) MHz**
- **\(V_{GS} = 4.5\) V**
- **\(ID = 350\) mA**

Gate Charge

- **\(V_{DS}\) - Gate-to-Source Voltage (V)**
- **\(Q_g\) - Total Gate Charge (nC)**
- **\(V_{DS} = 10\) V**
- **\(ID = 250\) mA**

On-Resistance vs. Junction Temperature

- **\(R_{DS(on)}\) - On-Resistance (Ω)**
- **\(V_{GS} = 1.8\) V**
- **\(ID = 150\) mA**
- **\(V_{GS} = 4.5\) V**
- **\(ID = 350\) mA**
- **\(V_{GS} = 1.8\) V**
- **\(ID = 150\) mA**
Si1016X

Vishay Siliconix

P-CHANNEL TYPICAL CHARACTERISTICS (*T_A = 25 °C*, unless otherwise noted)

![Diagrams showing typical characteristics of Si1016X](image)

- **Source-Drain Diode Forward Voltage**
- **Threshold Voltage Variance vs. Temperature**
- **On-Resistance vs. Gate-to-Source Voltage**
- **I_GS vs. Temperature**
- **BV_GSS vs. Temperature**

Notes:
- **VSD** - Source-to-Drain Voltage (V)
- **IGSS** - (µA)
- **VGS** - Gate-to-Source Voltage (V)
- **ID** = 350 mA
- **ID** = 200 mA
- **I_D** = 0.25 mA
- **I_D** = 0.1 mA
- **VGS** = 4.5 V
- **V_J** = 125 °C
- **V_J** = 25 °C
- **V_J** = -55 °C
N- OR P-CHANNEL TYPICAL CHARACTERISTICS
($T_A = 25 \, ^\circ\text{C}$, unless otherwise noted)

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?71168.
SC-89 6-Leads (SOT-563F)

Notes

1. Dimensions in millimeters.

- Dimension D does not include mold flash, protrusions or gate burrs. Mold flush, protrusions or gate burrs shall not exceed 0.15 mm per dimension E1 does not include interlead flash or protrusion, interlead flash or protrusion shall not exceed 0.15 mm per side.

- Dimensions D and E1 are determined at the outmost extremes of the plastic body exclusive of mold flash, the bar burrs, gate burrs and interlead flash, but including any mismatch between the top and the bottom of the plastic body.

- Datums A, B and D to be determined 0.10 mm from the lead tip.

- Terminal numbers are shown for reference only.

- These dimensions apply to the flat section of the lead between 0.08 mm and 0.15 mm from the lead tip.

Table:

<table>
<thead>
<tr>
<th>DIM.</th>
<th>MIN.</th>
<th>NOM.</th>
<th>MAX.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.56</td>
<td>0.58</td>
<td>0.60</td>
</tr>
<tr>
<td>A1</td>
<td>0</td>
<td>0.02</td>
<td>0.10</td>
</tr>
<tr>
<td>b</td>
<td>0.15</td>
<td>0.22</td>
<td>0.30</td>
</tr>
<tr>
<td>c</td>
<td>0.10</td>
<td>0.14</td>
<td>0.18</td>
</tr>
<tr>
<td>D</td>
<td>1.50</td>
<td>1.60</td>
<td>1.70</td>
</tr>
<tr>
<td>E</td>
<td>1.50</td>
<td>1.60</td>
<td>1.70</td>
</tr>
<tr>
<td>E1</td>
<td>1.15</td>
<td>1.20</td>
<td>1.25</td>
</tr>
<tr>
<td>e</td>
<td>0.45</td>
<td>0.50</td>
<td>0.55</td>
</tr>
<tr>
<td>e1</td>
<td>0.95</td>
<td>1.00</td>
<td>1.05</td>
</tr>
<tr>
<td>L</td>
<td>0.25</td>
<td>0.35</td>
<td>0.50</td>
</tr>
<tr>
<td>L1</td>
<td>0.10</td>
<td>0.20</td>
<td>0.30</td>
</tr>
</tbody>
</table>

C14-0439-Rev. C, 11-Aug-14
DWG: 5880
RECOMMENDED MINIMUM PADS FOR SC-89: 6-Lead

Recommended Minimum Pads
Dimensions in Inches/(mm)
Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay’s knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer’s responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer’s technical experts. Product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.