

New Product

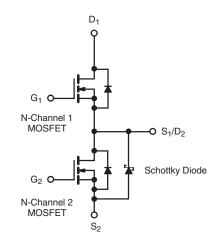
Dual N-Channel 30-V (D-S) MOSFET with Schottky Diode

PRODUCT SUMMARY						
	V _{DS} (V)	$r_{DS(on)}(\Omega)$	I _D (A)			
Channel-1	30	0.023 at V _{GS} = 10 V	7.0			
		0.032 at V _{GS} = 4.5 V	5.6			
		0.020 at V _{GS} = 10 V	7.4			
		0.027 at V _{GS} = 4.5 V	6.4			

SCHOTTKY PRODUCT SUMMARY						
V _{DS} (V)	V _{SD} (V) Diode Forward Voltage	I _F (A)				
30	0.40 V at 1.0 A	2.0				

Ordering Information: Si4914DY-T1-E3 (Lead (Pb)-free)

FEATURES


- LITTLE FOOT® Plus Integrated Schottky
- 100 % R_g Tested

Pb-free

ROHS

APPLICATIONS

- · Logic DC/DC
 - Notebook PC

Parameter		Symbol	Channel-1		Channel-2		Limit	
			10 sec	Steady State	10 sec	Steady State	Unit	
Drain-Source Voltage		V_{DS}	30				V	
Gate-Source Voltage		V_{GS}	20				V	
O D O (T 150.00)3	T _A = 25 °C	- I _D	7.0	5.5	7.4	5.7		
Continuous Drain Current $(T_J = 150 ^{\circ}\text{C})^2$	T _A = 70 °C		5.6	4.3	6	4.5		
Pulsed Drain Current		I _{DM}	40 40		40	Α		
Continuous Source Current (Diode Conduction) ^a		I _S	1.7	1.0	1.8	0.95		
Single Pulse Avalanche Current	se Avalanche Current		13		15			
Avalanche Energy	L = 0.1 mH	E _{AS}		8.45		11	mJ	
Maximum Power Dissipation ^a	T _A = 25 °C	В	1.9	1.1	2.0	1.16	W	
	T _A = 70 °C	- P _D	1.2	0.71	1.3	0.74] VV	
Operating Junction and Storage Temperature Range		T _J , T _{stg}	- 55 to 150				°C	

THERMAL RESISTANCE RATINGS										
Parameter		Symbol	Channel-1		Channel-2		I I m l A			
			Тур	Max	Тур	Max	Unit			
Manipular Landing La Austrianda	t ≤ 10 sec	R _{thJA}	52	65	47	60				
Maximum Junction-to-Ambient ^a	Steady State	' 'thJA	90	112	85	107	°C/W			
Maximum Junction-to-Foot (Drain)	Steady State	R_{thJF}	30	38	28	35	1			

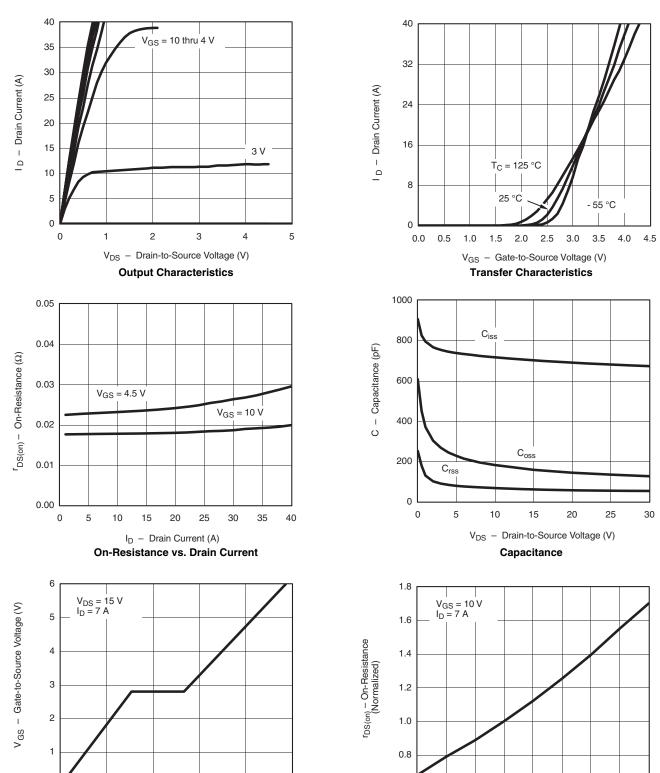
Notes:

a. Surface Mounted on 1" x 1" FR4 Board.

Static Gate Threshold Voltage V _{GS(th)} V _{DS} = V _{GS} , I _D = 250 μA Ch-1 Ch-2 1.0 2.5 2.5 1.0 2.5 2.5 1.0 2.5 2.5 1.0 2.5 2.5 1.0 2.5 2.5 1.0 2.5 2.5 1.0 2.5 2.5 1.0 2.5 2.5 1.0 2.5 2.5 1.0 2.5 2.5 1.0 2.5 2.5 1.0 2.5 2.5 2.5 1.0 2.5 2.	MOSFET SPECIFICATION	S $T_J = 25$	°C, unless otherwise noted					
Gate Threshold Voltage V _{GS(th)} V _{DS} = V _{GS} , I _D = 250 μA Ch-1	Parameter	er Symbol Test Conditions		Min	Typ ^a	Max	Unit	
Gate Threshold Voltage V _{GS} (th) V _{DS} = V _{GS} , I _D = 250 μA Ch-2 1.0 2.5 Ch-1 Ch-1 Ch-2 Ch-2 Ch-1 Ch-2 Ch-	Static					L		
Gate-Body Leakage I_GSS V_DS = 0 V, V_GS = 20 V Ch-1 100 100 Ch-2 Ch-1 Ch-2 Ch-2 Ch-1 Ch-2 Ch-2 Ch-1 Ch-2	Gate Threshold Voltage	V _{GS(th)}	Vps = Vcs. lp = 250 µA					V
Case	- Cate Thiodhold Voltage	- 03(11)	-D3 -G3, D F	_	1.0			•
	Gate-Body Leakage	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = 20 \text{ V}$					nA
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			$V_{DS} = 30 \text{ V}, V_{GS} = 0 \text{ V}$					μΑ
$V_{DS} = 30 \text{ V, } V_{GS} = 0 \text{ V, } V_{J} = 85 \text{ °C} \\ \text{Ch-2} \\ \text{Ch-2} \\ \text{Ch-2} \\ \text{Ch-2} \\ \text{Drain-Current}^{\text{b}} \\ \text{I}_{D(\text{on})} \\ \text{I}_{D(\text{on})} \\ \text{V}_{DS} = 5 \text{ V, } V_{GS} = 10 \text{ V} \\ \text{Ch-1} \\ \text{Ch-2} \\ \text{Ch-1} \\ \text{Ch-2} \\ \text{20} \\ \text{Ch-1} \\ \text{Ch-2} \\ \text{20} \\ \text{Ch-1} \\ \text{Ch-1} \\ \text{Ch-2} \\ \text{20} \\ \text{Ch-1} \\ \text{Ch-2} \\ \text{20} \\ \text{Ch-1} \\ \text{Ch-1} \\ \text{Ch-2} \\ \text{20} \\ \text{Ch-1} \\ \text{Ch-1} \\ \text{Ch-1} \\ \text{O.016} \\ \text{O.020} \\ \text{O.022} \\ \text{O.022} \\ \text{O.022} \\ \text{O.022} \\ \text{O.022} \\ \text{O.022} \\ \text{O.027} \\ \text{O.022} \\ \text{O.023} \\ \text{O.022} \\ \text{O.022} \\ \text{O.022} \\ \text{O.022} \\ \text{O.022} \\ \text{O.023} \\ \text{O.022} \\ \text{O.022} \\ \text{O.022} \\ \text{O.022} \\ \text{O.022} \\ \text{O.023} \\ \text{O.023} \\ \text{O.024} \\ \text{O.026} \\ \text{O.022} \\ \text{O.023} \\ \text{O.023} \\ \text{O.024} \\ \text{O.026} \\ \text{O.025} \\ \text{O.025} \\ \text{O.025} \\ \text{O.025} \\ \text{O.025} \\ \text{O.027} \\ \text{O.026} \\ \text{O.026} \\ \text{O.026} \\ \text{O.027} \\ \text{O.027} \\ \text{O.026} \\ \text{O.026} \\ \text{O.027} \\ \text{O.027} \\ \text{O.026} \\ \text{O.027} \\ \text{O.026} \\ \text{O.027} \\ \text{O.027} \\ \text{O.026} \\ \text{O.026} \\ \text{O.027} \\ \text{O.026} \\ \text{O.026} \\ \text{O.026} \\ \text{O.027} \\ \text{O.027} \\ \text{O.026} \\ \text{O.026} \\ \text{O.026} \\ \text{O.027} \\ \text{O.026} \\ \text{O.027} \\ \text{O.026} \\ \text{O.026} \\ \text{O.026} \\ \text{O.026} \\ \text{O.026} \\ \text{O.026} \\ \text{O.027} \\ \text{O.026} \\ \text{O.026} \\ \text{O.026} \\ \text{O.026} \\ \text{O.026} \\ O$	Zero Gate Voltage Drain Current	I_{DSS}		_				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			$V_{DS} = 30 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 85 ^{\circ}\text{C}$					mA
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			V 5VV 40V		20			_
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	On-State Drain Current ^D	I _{D(on)}	$V_{DS} = 5 \text{ V}, V_{GS} = 10 \text{ V}$	Ch-2	20			Α
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			V _{GS} = 10 V, I _D = 7.0 A	Ch-1		0.019	0.023	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Drain Course On State Besistance	roo,		Ch-2		0.016	0.020	Ω
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Drain-Source On-State Resistance	'DS(on)		Ch-1		0.026	0.032	52
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							0.027	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Forward Transconductance ^b	Q_{fe}						S
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Torward Hariocoridadianoc	315		_				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Diode Forward Voltage ^b	V _{SD}						V
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			I _S = 1 A, V _{GS} = 0 V	Cn-2		0.36	0.40	<u> </u>
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Dynamic-		I	Ch-1		5.6	9.5	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Total Gate Charge	Q_g						
		_	$V_{DS} = 15 \text{ V}, V_{GS} = 4.5 \text{ V}, I_{D} = 7.0 \text{ A}$	_			''	nC
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Gate-Source Charge	Q_gs	Ohamad 0	_				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0		1			1.7		-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Gate-Drain Charge	Q_{gd}	VDS = 10 V, VGS = 4.0 V, ID = 7.4 //	Ch-2		2.2		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Gata Pacietanea	R_g		Ch-1	0.5	2.3	3.6	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	date nesistance			Ch-2	0.5	1.6	2.5	Ω
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Turn-On Delay Time	t _{d(on)}	Channal 1	Ch-1		6	10	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Tan On Belay Time	'a(on)					11	
	Rise Time	t _r					_	
			den - , den					ns
$V_{DD} = 15 \text{ V, } R_L = 15 \Omega \qquad \qquad CH-2 \qquad 35 \qquad 53$ $V_{DD} = 15 \text{ V, } R_g = 6 \Omega \qquad Ch-1 \qquad \qquad 9 \qquad 15$ $Ch-2 \qquad \qquad 10 \qquad 15$	Turn-Off Delay Time	t _{d(off)}		_				
Fall Time								
	Fall Time	t _f	$I_D \cong 1 \text{ A}, V_{GEN} = 10 \text{ V}, R_g = 6 \Omega$					
$I_{\rm F} = 1.3 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s}$ Ch-1 30 50			I _F = 1.3 A, di/dt = 100 A/μs					
Source-Drain Reverse Recovery Time t_{rr} $I_F = 2.2 \text{ A}$, $di/dt = 100 \mu\text{A}/\mu\text{s}$ $Ch-2$ 30 50	Source-Drain Reverse Recovery Time	t _{rr}						

Notes: a. Guaranteed by design, not subject to production testing. b. Pulse test; pulse width \leq 300 μ s, duty cycle \leq 2 %.

SCHOTTKY SPECIFICATIONS $T_J = 25$ °C, unless otherwise noted								
Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit		
Forward Voltage Drop	V _F	I _F = 1.0 A		0.36	0.40	V		
		I _F = 1.0 A, T _J = 150 °C		0.27	0.31			
Maximum Reverse Leakage Current	I _{rm}	V _r = 30 V		0.008	0.50	mA		
		V _r = 30 V, T _J = 100 °C		3.5	10			
		V _r = - 30 V, T _J = 125 °C		10	100			
Junction Capacitance	C _T	V _r = 10 V		58		pF		


Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

CHANNEL-1 TYPICAL CHARACTERISTICS 25 °C, unless noted

0.6

- 50

- 25

0

25

50

 T_J – Junction Temperature (°C)

On-Resistance vs. Junction Temperature

75

100

0.0

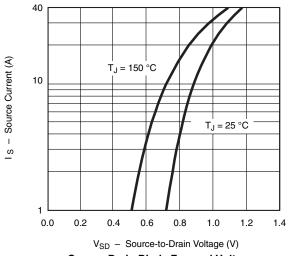
1.5

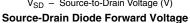
3.0

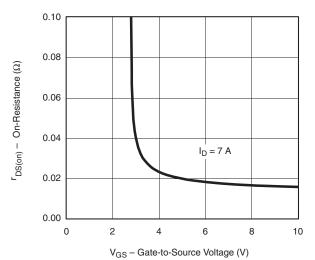
4.5

Q_g - Total Gate Charge (nC)

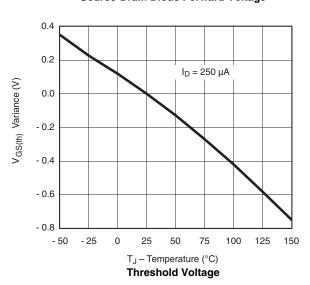
Gate Charge

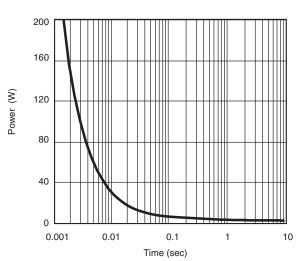

6.0

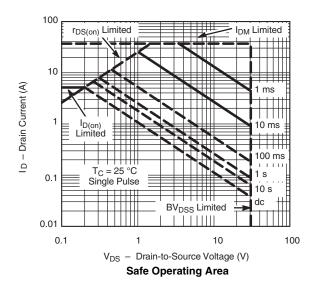

7.5


125

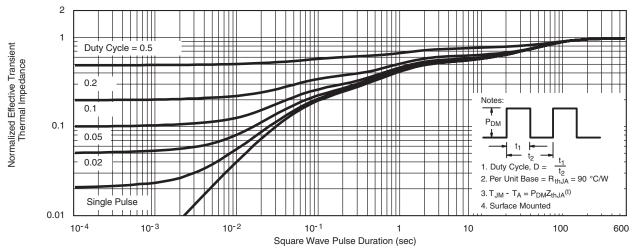
150


CHANNEL-1 TYPICAL CHARACTERISTICS 25 °C, unless noted

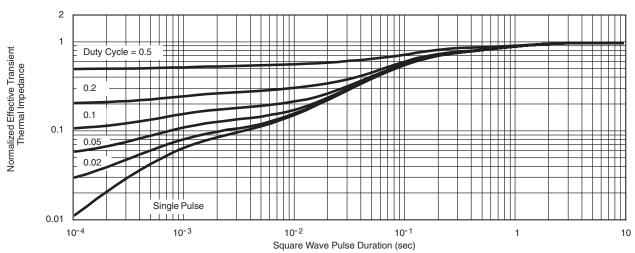




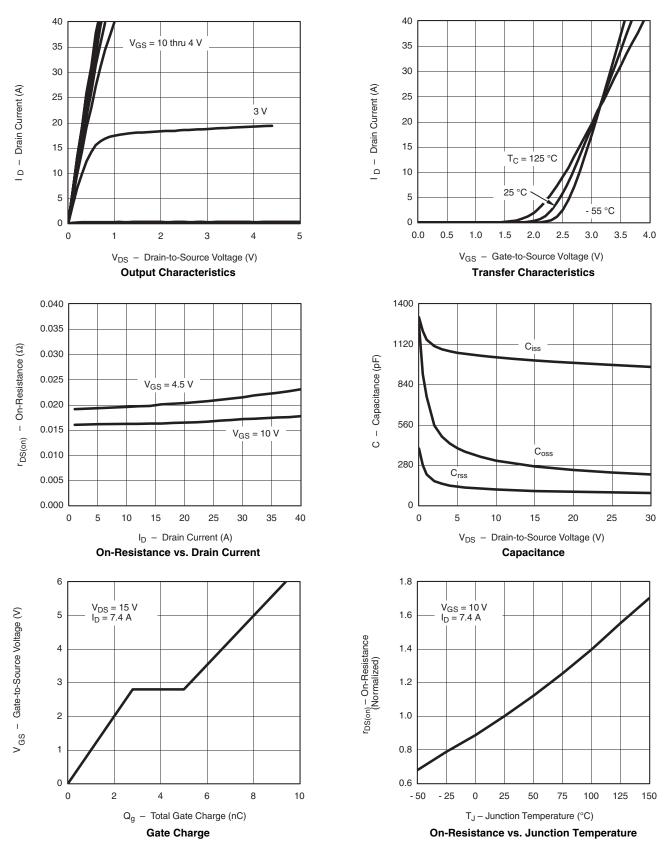
On-Resistance vs. Gate-to-Source Voltage



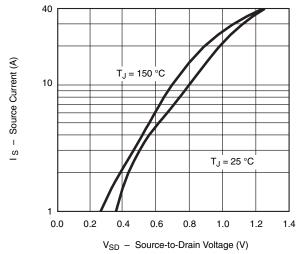
Single Pulse Power, Junction-to-Ambient

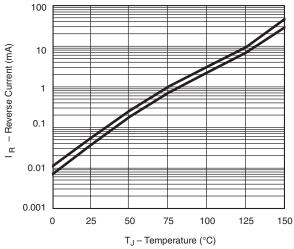


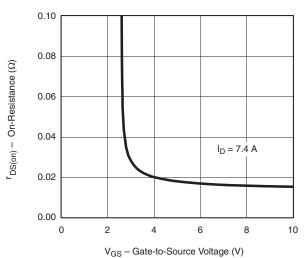
CHANNEL-1 TYPICAL CHARACTERISTICS 25 °C, unless noted

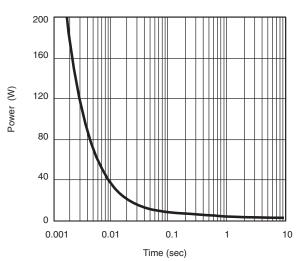

Normalized Thermal Transient Impedance, Junction-to-Ambient

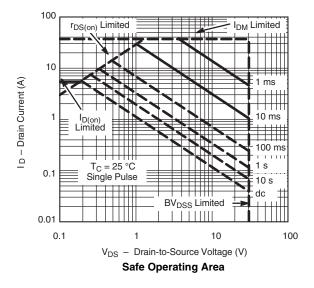
Normalized Thermal Transient Impedance, Junction-to-Foot


CHANNEL-2 TYPICAL CHARACTERISTICS 25 °C, unless noted

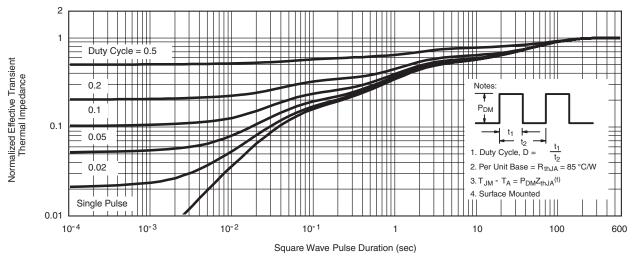



CHANNEL-2 TYPICAL CHARACTERISTICS 25 °C, unless noted

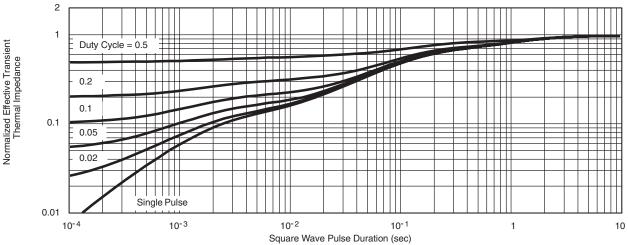

Source-Drain Diode Forward Voltage


Reverse Current vs. Junction Temperature

On-Resistance vs. Gate-to-Source Voltage



Single Pulse Power, Junction-to-Ambient



CHANNEL-2 TYPICAL CHARACTERISTICS 25 °C, unless noted

Normalized Thermal Transient Impedance, Junction-to-Ambient

Normalized Thermal Transient Impedance, Junction-to-Foot

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see http://www.vishay.com/ppg?72938.

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Vishay products are not designed for use in life-saving or life-sustaining applications or any application in which the failure of the Vishay product could result in personal injury or death unless specifically qualified in writing by Vishay. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.