

## Low-Power, High-Speed CMOS Analog Switches

#### DESCRIPTION

The DG401B, DG403B, DG405B monolithic analog switches are replacements for the popular DG401, DG403, DG405 analog switches and provide improved performance, combining high speed ( $t_{on}$ : 100 ns, typ.) with low power consumption make the DG401B series ideal for portable and battery powered applications.

Built on the Vishay Siliconix proprietary high-voltage silicon gate process to achieve high voltage rating and superior switch on/off performance, break-before-make is guaranteed for the SPDT configurations.

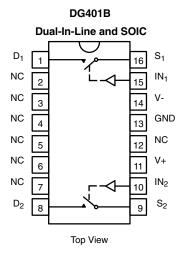
Each switch conducts equally well in both directions when on, and blocks up to 30 V peak-to-peak when off. On-resistance is very flat over the full  $\pm$  15 V analog range. The DG401B has two independent SPST switches. The DG403B has four SPST switches in NO/NC combinations. The DG405B has four switches in two SPST pairs (see Functional Block Diagrams and Pin Configurations)

The DG401B, DG403B, DG405B is available in both 16-pin plastic dip and 16-pin SOIC packages.

As a committed partner to the community and the environment, Vishay Siliconix manufactures this product with the lead (Pb)-free device terminations. For analog switching products manufactured with 100 % matter tin device terminations, the lead (Pb)-free "-E3" suffix is being used as a designator.

### FEATURES

- 44 V supply max rating
- ± 15 V analog signal range
- On-resistance R<sub>DS(on)</sub>: 23 Ω
- Low leakage I<sub>D(on)</sub>: 40 pA
- Fast switching ton: 100 ns
- Upgrade to DG401B, DG403B, DG405B
- TTL, CMOS compatible
- · Single supply capability


#### **APPLICATIONS**

- · Audio and video switching
- · Sample-and-hold circuits
- Test equipment
- PBX, PABX

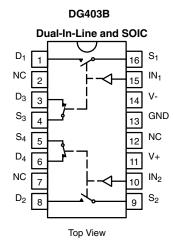
#### BENEFITS

- Wide dynamic range
- Break-before-make switching action (DG403B only)
- Simple interfacing

### FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION



Two SPST Switches per Package


| TRUTH TABLE |        |  |  |  |  |
|-------------|--------|--|--|--|--|
| LOGIC       | SWITCH |  |  |  |  |
| 0           | Off    |  |  |  |  |
| 1           | On     |  |  |  |  |

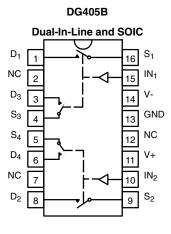
Note

• Logic "0" ≤ 0.8 V Logic "1" ≥ 2.4 V



#### FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION




Four SPST Switches in Two Pairs per Package

| TRUTH TABLE |          |          |  |  |
|-------------|----------|----------|--|--|
| LOGIC       | SW1, SW2 | SW3, SW4 |  |  |
| 0           | Off      | On       |  |  |
| 1           | On       | Off      |  |  |

#### Note

Logic "0" ≤ 0.8 V

Logic "1" ≥ 2.4 V



Top View

Four SPST Switches in Two Pairs per Package

| TRUTH TABLE |        |  |  |  |  |
|-------------|--------|--|--|--|--|
| LOGIC       | SWITCH |  |  |  |  |
| 0           | Off    |  |  |  |  |
| 1           | On     |  |  |  |  |

Note

Logic "1" ≥ 2.4 V

| ORDERING INFORMATION               |                |                                       |                  |  |  |  |
|------------------------------------|----------------|---------------------------------------|------------------|--|--|--|
| STANDARD COMMERCIAL<br>PART NUMBER | PACKAGE        | TEMP. RANGE                           |                  |  |  |  |
| DG401BDJ                           | DG401BDJ-E3    |                                       |                  |  |  |  |
| DG403BDJ                           | DG403BDJ-E3    | 16-pin plastic Dip                    |                  |  |  |  |
| DG405BDJ                           | DG405BDJ-E3    |                                       |                  |  |  |  |
| DG401BDY                           | DG401BDY-E3    |                                       |                  |  |  |  |
| DG403BDY                           | DG403BDY-E3    | 16-pin narrow SOIC                    | -40 °C to +85 °C |  |  |  |
| DG405BDY                           | DG405BDY-E3    |                                       |                  |  |  |  |
| DG401BDY-T1                        | DG401BDY-T1-E3 |                                       |                  |  |  |  |
| DG403BDY-T1                        | DG403BDY-T1-E3 | 16-pin narrow SOIC with tape and reel |                  |  |  |  |
| DG405BDY-T1                        | DG405BDY-T1-E3 | 1361                                  |                  |  |  |  |

| <b>ABSOLUTE MAXIMUM RATINGS</b> ( $T_A = 25 \text{ °C}$ , unless otherwise noted) |                                 |                                                                  |      |  |  |  |
|-----------------------------------------------------------------------------------|---------------------------------|------------------------------------------------------------------|------|--|--|--|
| PARAMETER                                                                         |                                 | LIMIT                                                            | UNIT |  |  |  |
| V+ to V-                                                                          |                                 | 44                                                               |      |  |  |  |
| GND to V-                                                                         |                                 | 25                                                               | V    |  |  |  |
| Digital inputs <sup>a</sup> , V <sub>S</sub> , V <sub>D</sub>                     |                                 | (V-) - 0.3 V to (V+) + 0.3 V<br>or 30 mA, whichever occurs first | v    |  |  |  |
| Continuous current (any terminal)                                                 |                                 | 30                                                               |      |  |  |  |
| Peak current, S or D (pulsed at 1 ms, 10 % duty)                                  |                                 | 100                                                              | mA   |  |  |  |
| Storage temperature                                                               | (DJ, DY suffix)                 | - 65 to +125                                                     | °C   |  |  |  |
| Power dissipation (package) <sup>b</sup>                                          | 16-pin plastic DIP <sup>c</sup> | 450                                                              | mW   |  |  |  |
| Fower dissipation (package)                                                       | 16-pin SOIC <sup>d</sup>        | 600                                                              | TTTV |  |  |  |

#### Notes

a. Signals on S<sub>X</sub>, D<sub>X</sub>, or IN<sub>X</sub> exceeding V+ or V- will be clamped by internal diodes. Limit forward diode current to maximum current ratings
b. All leads welded or soldered to PC board

c. Derate 6 mW/°C above 75 °C
d. Derate 7.6 mW/°C above 75 °C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

S11-0179-Rev. B, 07-Feb-11

2

Document Number: 73069

For technical questions, contact: analogswitchtechsupport@vishay.com

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishav.com/doc?91000

Logic "0" ≤ 0.8 V



DG401B, DG403B, DG405B

Vishay Siliconix

| $ \begin{array}{ c c c c c c } \hline PARAMETER & SYMBOL & TEST CONDITIONS & TEST $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SPECIFICATIONS <sup>a</sup>      |                                     |                                                                  |        |                   |        |        |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-------------------------------------|------------------------------------------------------------------|--------|-------------------|--------|--------|------|
| $ \begin{array}{ c c c c c } \hline V = 15 V, V = 16 V, V_{IN} & MIN.^{d} & TYP.^{o} & MAX.^{d} & MIN.^{d} \\ \hline TYP.^{o} & MAX.^{d} & MIN.^{d} & TYP.^{o} & MAX.^{d} & MIN.^{d} \\ \hline TYP.^{o} & MAX.^{d} & MIN.^{d} & TYP.^{o} & MAX.^{d} & MIN.^{d} \\ \hline \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PARAMETER                        | SYMBOL                              | UNLESS SPECIFIED                                                 | TEMP b |                   |        |        |      |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                  | $V_{+} = 15 V, V_{-} = -15 V,$      |                                                                  |        | MIN. <sup>d</sup> | TYP. ℃ | MAX. d | •••• |
| $ \begin{array}{ c c c c c c } \hline \mbox{Particles} & $I_{0c}$ & $I_$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Analog Switch                    |                                     |                                                                  |        |                   |        |        |      |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Analog signal range <sup>e</sup> | V <sub>ANALOG</sub>                 |                                                                  | Full   | -15               | -      | 15     | V    |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Drain-source on-resistance       | Base                                |                                                                  | Room   | -                 | 23     | 45     |      |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                  | US(on)                              | V+ = 13.5 V, V- = -13.5 V                                        | Full   | -                 | -      | 55     | 0    |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ∧ drain-source on-resistance     |                                     |                                                                  | Room   | -                 | 0.72   | 3      | 32   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                  | Li (DS(ON)                          | V+ = 16.5 V, V- = -16.5 V                                        | Full   | -                 | -      | 5      |      |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                  | 0/-10                               |                                                                  | Room   | -0.5              | -0.01  | 0.5    |      |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Switch Off Leakage Current       | 'S(off)                             |                                                                  | Hot    | -5                | -      | 5      |      |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Switch on Leakage Suitchi        |                                     | $V_{D} = \pm 15.5 \text{ V}, \text{ V}_{S} = \pm 15.5 \text{ V}$ | Room   | -0.5              | -0.01  | 0.5    | nΔ   |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                  | D(off)                              |                                                                  | Hot    | -5                | -      | 5      |      |
| $ \begin{array}{ c c c c c c } \hline V_{S} = V_{D} = \pm 15.5 V & Hot & -10 & - & 10 \\ \hline \begin{tabular}{ c c c c } \hline V_{IS} = V_{D} = \pm 15.5 V & Hot & -10 & - & 10 \\ \hline \begin{tabular}{ c c c c } \hline Digital Control & & & & & & & & & & & & & & & & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Channel on leakage current       |                                     |                                                                  | Room   | -1                | -0.04  | 1      |      |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Channel on leakage current       | D(on)                               | $V_{S} = V_{D} = \pm 15.5 V$                                     | Hot    | -10               | -      | 10     |      |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Digital Control                  |                                     |                                                                  |        |                   |        |        |      |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Input, high voltage              | IIL                                 | $V_{IN}$ under test = 0.8 V, all other = 2.4 V                   | Full   | -1                | 0.005  | 1      | μA   |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Input, low voltage               | I <sub>IH</sub>                     | $V_{IN}$ under test = 2.4 V, all other = 0.8 V                   | Full   | -1                | 0.005  | 1      | μΑ   |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Dynamic Characteristics          |                                     |                                                                  |        |                   |        |        |      |
| $ \frac{1}{100 \text{ mm}} \frac{1}{100 \text{ mm}} \frac{1}{100 \text{ m}} \frac{1}{100 $ | Turn-on time                     | t <sub>on</sub>                     | $R_L = 300 \Omega$ , $C_L = 35 pF$ ,                             | Room   | -                 | 100    | 150    |      |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Turn-off time                    | t <sub>off</sub>                    | see Fig. 2                                                       | Room   | -                 | 60     | 100    | ns   |
| $ \begin{array}{c c c c c c } \hline Off \mbox{ isolation reject ratio } & OIRR \\ \hline Channel-to-channel \mbox{ crosstalk } & X_{TALK} \\ \hline Channel-to-channel \mbox{ crosstalk } & X_{TALK} \\ \hline Source \mbox{ off \mbox{ capacitance } & C_{S(off)} \\ \hline Drain \mbox{ off \mbox{ capacitance } & C_{D(off)} \\ \hline Drain \mbox{ off \mbox{ capacitance } & C_{D, \mbox{ cs}(on)} \\ \hline The text capacitance & C_{D, \mbox{ cs}(on)} \\ \hline The text capacitance & C_{D, \mbox{ cs}(on)} \\ \hline The text capacitance & C_{D, \mbox{ cs}(on)} \\ \hline The text capacitance & C_{D, \mbox{ cs}(on)} \\ \hline The text capacitance & C_{D, \mbox{ cs}(on)} \\ \hline The text capacitance & C_{D, \mbox{ cs}(on)} \\ \hline The text capacitance & C_{D, \mbox{ cs}(on)} \\ \hline The text capacitance & C_{D, \mbox{ cs}(on)} \\ \hline The text capacitance & C_{D, \mbox{ cs}(on)} \\ \hline The text capacitance & C_{D, \mbox{ cs}(on)} \\ \hline The text capacitance & C_{D, \mbox{ cs}(on)} \\ \hline The text capacitance & C_{D, \mbox{ cs}(on)} \\ \hline The text capacitance & C_{D, \mbox{ cs}(on)} \\ \hline The text capacitance & C_{D, \mbox{ cs}(on)} \\ \hline The text capacitance & C_{D, \mbox{ cs}(on)} \\ \hline The text capacitance & C_{D, \mbox{ cs}(on)} \\ \hline The text capacitance & C_{D, \mbox{ cs}(on)} \\ \hline The text capacitance & C_{D, \mbox{ cs}(on)} \\ \hline The text capacitance & C_{D, \mbox{ cs}(on)} \\ \hline The text capacitance & C_{D, \mbox{ cs}(on)} \\ \hline The text capacitance & C_{D, \mbox{ cs}(on)} \\ \hline The text capacitance & C_{D, \mbox{ cs}(on)} \\ \hline The text capacitance & C_{D, \mbox{ cs}(on)} \\ \hline The text capacitance & C_{D, \mbox{ cs}(on)} \\ \hline The text capacitance & C_{D, \mbox{ cs}(on)} \\ \hline The text capacitance & C_{D, \mbox{ cs}(on)} \\ \hline The text capacitance & C_{D, \mbox{ cs}(on)} \\ \hline The text capacitance & C_{D, \mbox{ cs}(on)} \\ \hline The text capacitance & C_{D, \mbox{ cs}(on)} \\ \hline The text capacitance & C_{D, \mbox{ cs}(on)} \\ \hline The text capacitance & C_{D, \mbox{ cs}(on)} \\ \hline The text capacitance & C_{D, \mbox{ cs}(on)} \\ \hline The text capacitance & C_{D, \mbox{ cs}(on)} \\ \hline The text capacitance & C_{D, \mbox{ cs}(on)} \\ \hline The text capacitance & The te$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ,                                | t <sub>D</sub>                      | $R_L = 300 \ \Omega, \ C_L = 35 \ pF$                            | Room   | 5                 | 12     | -      |      |
| $ \begin{array}{c c c c c c } RL = 100 \text{ W}, CL = 5 \text{ pF}, \text{ f} = 1 \text{ MHz} & \hline Room & - & -94.8 & - & \hline dB \\ \hline \text{Room} & - & -94.8 & - & \hline \\ \hline \text{Room} & - & 12 & - & \\ \hline \text{Room} & - & 12 & - & \\ \hline \text{Room} & - & 12 & - & \\ \hline \text{Room} & - & 12 & - & \\ \hline \text{Room} & - & 12 & - & \\ \hline \text{Room} & - & 39 & - & \\ \hline \text{Room} & - & 39 & - & \\ \hline \text{Power Supplies} & & & & \\ \hline \text{Positive Supply Current} & I+ & & & \\ \hline \text{Negative Supply Current} & I- & I- & & \\ \hline \text{I-} & V+ = 16.5 \text{ V}, V- = -16.5 \text{ V} \\ V_{IN} = 0 \text{ V or 5 V} & \hline \text{Room} & -0.5 & 0.25 & - & \\ \hline \hline \text{Room} & -0.5 & 0.25 & - & \\ \hline \hline \text{Room} & -0.5 & 0.25 & - & \\ \hline \hline \text{Room} & -0.5 & 0.25 & - & \\ \hline \hline \text{Room} & -0.5 & 0.25 & - & \\ \hline \hline \text{Room} & -0.5 & 0.25 & - & \\ \hline \hline \text{Room} & -0.5 & 0.25 & - & \\ \hline \hline \text{Room} & -0.5 & 0.25 & - & \\ \hline \hline \text{Room} & -0.5 & 0.25 & - & \\ \hline \hline \text{Room} & -0.5 & 0.25 & - & \\ \hline \hline \text{Room} & -0.5 & 0.25 & - & \\ \hline \hline \text{Room} & -0.5 & 0.25 & - & \\ \hline \hline \text{Room} & -0.5 & 0.25 & - & \\ \hline \hline \text{Room} & -0.5 & 0.25 & - & \\ \hline \hline \text{Room} & -0.5 & 0.25 & - & \\ \hline \hline \text{Room} & -0.5 & 0.25 & - & \\ \hline \hline \text{Room} & -0.5 & 0.25 & - & \\ \hline \hline \text{Room} & -0.5 & 0.25 & - & \\ \hline \hline \text{Room} & -0.5 & 0.25 & - & \\ \hline \hline \text{Room} & -0.5 & 0.25 & - & \\ \hline \hline \text{Room} & -0.5 & 0.25 & - & \\ \hline \hline \text{Room} & -0.5 & 0.25 & - & \\ \hline \hline \text{Room} & -0.5 & 0.25 & - & \\ \hline \hline \hline \text{Room} & -0.5 & 0.25 & - & \\ \hline \hline \hline \ \text{Room} & -0.5 & 0.25 & - & \\ \hline \hline \hline \ \hline \ \text{Room} & -0.5 & 0.25 & - & \\ \hline \hline \hline \hline \ \hline \ \hline \ \ \ \ \ \ \ \ \ \ \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Charge injection                 | Q                                   | $C_L$ = 10 000 pF, $V_{gen}$ = 0 V, $R_{gen}$ = 0 $\Omega$       | Room   | -                 | 60     | -      | рС   |
| $ \begin{array}{c c c c c c c } \hline Channel-to-channel crosstalk & X_{TALK} & A & A & A & A & A & A & A & A & A & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Off isolation reject ratio       | OIRR                                |                                                                  | Room   | -                 | -81.7  | -      | d٦   |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Channel-to-channel crosstalk     | X <sub>TALK</sub>                   | RL = 100 W, CL = 5 pr, 1 = 1 MHZ                                 | Room   | -                 | -94.8  | -      | αв   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Source off capacitance           | C <sub>S(off)</sub>                 |                                                                  | Room   | -                 | 12     | -      |      |
| Power Supplies         Room         -         0.250         0.5           Positive Supply Current         I+         Image: Negative Supply Current         Im                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Drain off capacitance            | C <sub>D(off)</sub>                 | f = 1 MHz, V <sub>S</sub> = 0 V                                  | Room   | -                 | 12     | -      | pF   |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Channel on capacitance           | C <sub>D</sub> , C <sub>S(on)</sub> |                                                                  | Room   | -                 | 39     | -      |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                  |                                     |                                                                  |        |                   |        |        |      |
| Negative Supply Current         I-         V+ = 16.5 V, V- = -16.5 V<br>$V_{IN} = 0 V \text{ or } 5 V$ Full         -         -         1           Ground current         Ieno         Ieno         Negative Supply Current         Ieno         Main         Negative Supply Current         Ieno         Main         Ieno         Ieno <td>Depitive Supply Current</td> <td rowspan="2">l+</td> <td></td> <td>Room</td> <td>-</td> <td>0.250</td> <td>0.5</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Depitive Supply Current          | l+                                  |                                                                  | Room   | -                 | 0.250  | 0.5    |      |
| Negative Supply Current         I-         V = 10.5 V, V = 10.5 V         Full         -1         -         -         mA           Ground current         Ienp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Positive Supply Current          |                                     |                                                                  | Full   | -                 | -      | 1      | ]    |
| Ground current         Icon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                                     | V+ = 16.5 V, V- = -16.5 V                                        | Room   | -0.5              | 0.25   | -      |      |
| Ground current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Negative Supply Current          |                                     | $V_{IN} = 0 V \text{ or } 5 V$                                   | Full   | -1                | -      | -      | mA   |
| Full -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Cround ourrent                   |                                     | ]                                                                | Room   | -0.5              | 0.25   | -      | 1    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ground current                   | GND                                 |                                                                  | Full   | -1                | -      | -      |      |

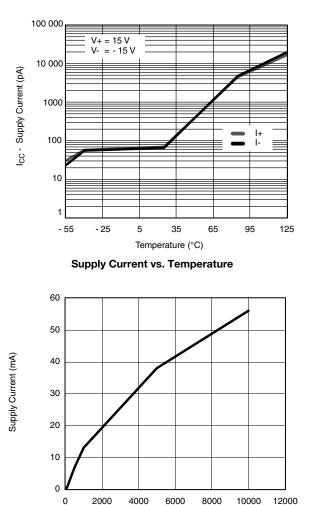
Notes

a. Refer to PROCESS OPTION FLOWCHART

b. Room = 25 °C, full = as determined by the operating temperature suffix

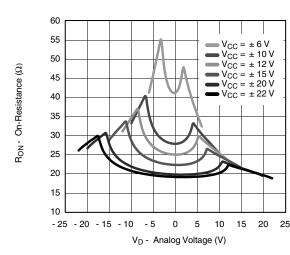
c. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing

d. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this datasheet

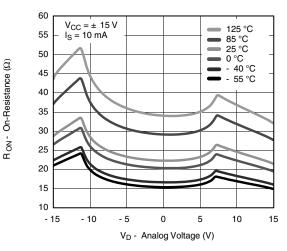

e. Guaranteed by design, not subject to production test

f.  $V_{IN}$  = input voltage to perform proper function

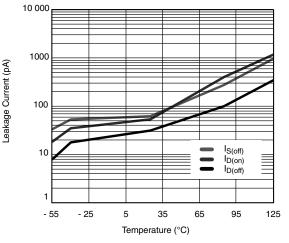




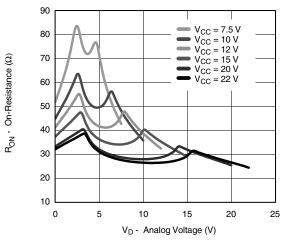

### TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)




Supply Current vs. Switching Frequency


Frequency (kHz)




R<sub>ON</sub> vs. Analog Voltage and Supply Voltage



R<sub>ON</sub> vs. Analog Voltage and Temperature

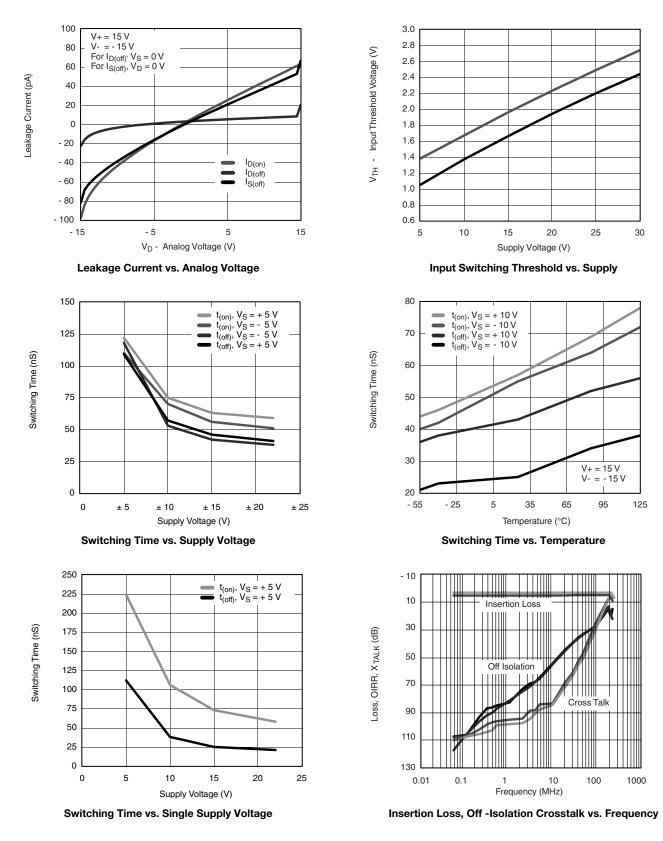


Leakage Current vs. Temperature



R<sub>ON</sub> vs. Analog Voltage and Single Supply

4


For technical questions, contact: analogswitchtechsupport@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000



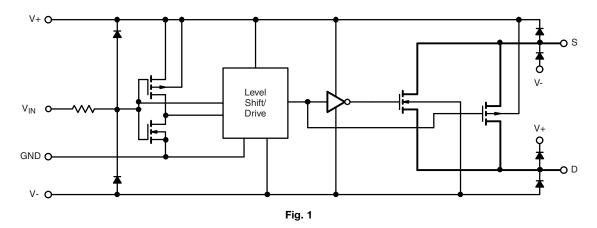
## DG401B, DG403B, DG405B

**Vishay Siliconix** 

### TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

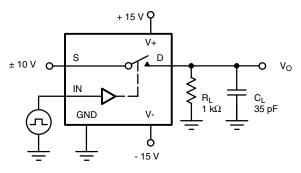


S11-0179-Rev. B, 07-Feb-11


5

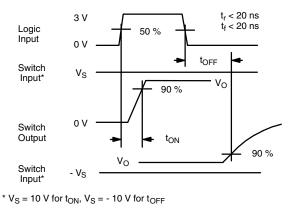
Document Number: 73069

For technical questions, contact: <u>analogswitchtechsupport@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

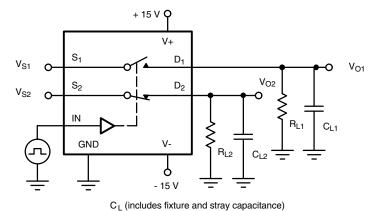


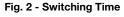

### SCHEMATIC DIAGRAM (typical channel)




#### **TEST CIRCUITS**

 $V_{O}$  is the steady state output with the switch on. Feedthrough via switch capacitance may result in spikes at the leading and trailing edge of the output waveform.





 $\mathrm{C}_{\mathrm{L}}$  (includes fixture and stray capacitance)

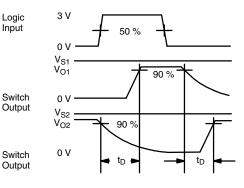
$$V_{O} = V_{S} \qquad \frac{R_{L}}{R_{L} + R_{DS(on)}}$$

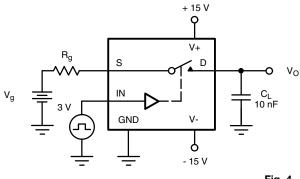


Note: Logic input waveform is inverted for switches that have the opposite logic sense control









Fig. 3 - Break-Before-Make

6

For technical questions, contact: analogswitchtechsupport@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000



### **TEST CIRCUITS**



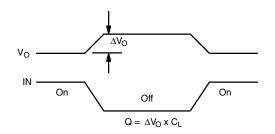
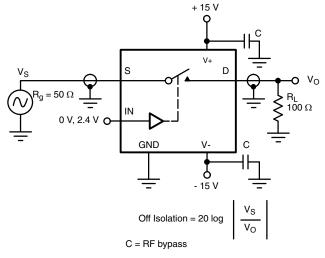




Fig. 4 - Charge Injection





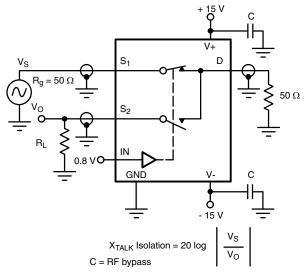



Fig. 6 - Crosstalk

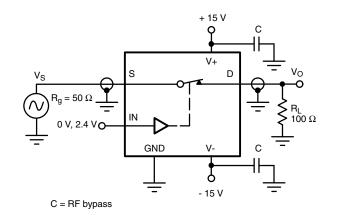



Fig. 7 - Insertion Loss

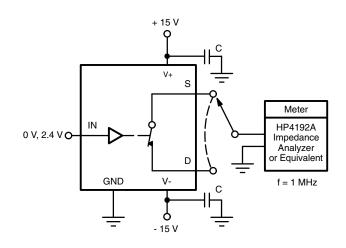



Fig. 8 - Capacitances

S11-0179-Rev. B, 07-Feb-11

7

Document Number: 73069

For technical questions, contact: <u>analogswitchtechsupport@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u> www.vishay.com

### **Vishay Siliconix**

### APPLICATIONS

'ISHA

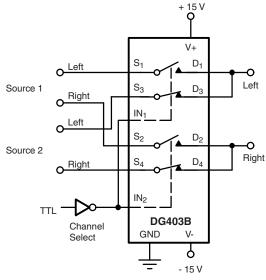



Fig. 9 - Stereo Source Selector

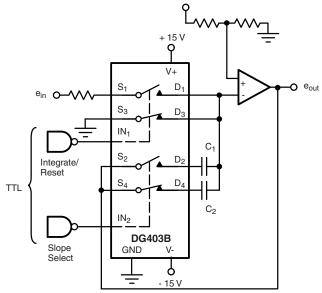



Fig. 10 - Dual Slope Integrator

#### **Dual Slope Integrators**

The DG403B is well suited to configure a selectable slope integrator. One control signal selects the timing capacitor  $C_1$  or  $C_2$ . Another one selects  $e_{in}$  or discharges the capacitor in preparation for the next integration cycle.

#### **Band-Pass Switched Capacitor Filter**

Single-pole double-throw switches are a common element for switched capacitor networks and filters. The fast switching times and low leakage of the DG403B allow for higher clock rates and consequently higher filter operating frequencies.

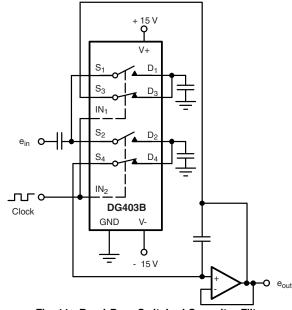
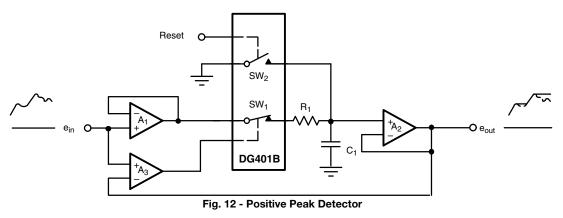




Fig. 11 - Band-Pass Switched Capacitor Filter

#### Peak Detector

 $A_3$  acting as a comparator provides the logic drive for operating SW<sub>1</sub>. The output of  $A_2$  is fed back to  $A_3$  and compared to the analog input  $e_{in}$ . If  $e_{in} > e_{out}$  the output of  $A_3$  is high keeping SW<sub>1</sub> closed. This allows C1 to charge up to the analog input voltage. When  $e_{in}$  goes below  $e_{out} A_3$ goes negative, turning SW<sub>1</sub> off. The system will therefore store the most positive analog input experienced.



8

Document Number: 73069

For technical questions, contact: analogswitchtechsupport@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

## DG401B, DG403B, DG405B



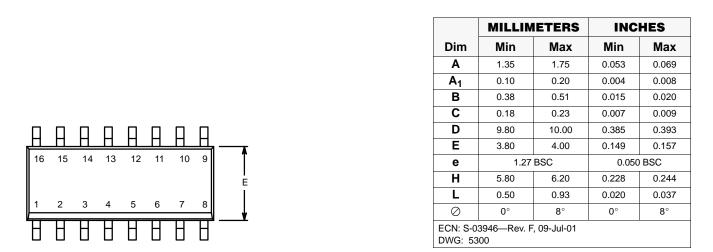
S11-0179-Rev. B, 07-Feb-11

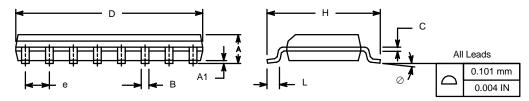
www.vishay.com

Vishay Siliconix

Document Number: 73069

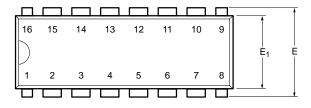
| PRODUCT SUMMARY                      | ,                                                              |                                                                |                                                                |                                                                |                                                                |                                                                |
|--------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|
| Part number                          | DG401B                                                         | DG401B                                                         | DG403B                                                         | DG403B                                                         | DG405B                                                         | DG405B                                                         |
| Status code                          | 2                                                              | 2                                                              | 2                                                              | 2                                                              | 2                                                              | 2                                                              |
| Configuration                        | SPST x 2, NO                                                   | SPST x 2, NO                                                   | SPST x 4, comp,<br>two pairs                                   | SPST x 4, comp,<br>two pairs                                   | SPST x 4, NO,<br>two pairs                                     | SPST x 4, NO,<br>two pairs                                     |
| Single supply min. (V)               | 5                                                              | 5                                                              | 5                                                              | 5                                                              | 5                                                              | 5                                                              |
| Single supply max. (V)               | 36                                                             | 36                                                             | 36                                                             | 36                                                             | 36                                                             | 36                                                             |
| Dual supply min. (V)                 | 5                                                              | 5                                                              | 5                                                              | 5                                                              | 5                                                              | 5                                                              |
| Dual supply max. (V)                 | 22                                                             | 22                                                             | 22                                                             | 22                                                             | 22                                                             | 22                                                             |
| On-resistance (Ω)                    | 23                                                             | 23                                                             | 23                                                             | 23                                                             | 23                                                             | 23                                                             |
| Charge injection (pC)                | 60                                                             | 60                                                             | 60                                                             | 60                                                             | 60                                                             | 60                                                             |
| Source on capacitance (pF)           | 39                                                             | 39                                                             | 39                                                             | 39                                                             | 39                                                             | 39                                                             |
| Source off capacitance (pF)          | 12                                                             | 12                                                             | 12                                                             | 12                                                             | 12                                                             | 12                                                             |
| Leakage switch on typ. (nA)          | 0.04                                                           | 0.04                                                           | 0.04                                                           | 0.04                                                           | 0.04                                                           | 0.04                                                           |
| Leakage switch off max. (nA)         | 0.5                                                            | 0.5                                                            | 0.5                                                            | 0.5                                                            | 0.5                                                            | 0.5                                                            |
| -3 dB bandwidth (MHz)                | -                                                              | -                                                              | -                                                              | -                                                              | -                                                              | -                                                              |
| Package                              | Plastic DIP-16                                                 | SO-16 (narrow)<br>AS                                           | Plastic DIP-16                                                 | SO-16 (narrow)<br>AS                                           | Plastic DIP-16                                                 | SO-16 (narrow)<br>AS                                           |
| Functional circuit /<br>applications | Multi purpose,<br>instrumentation<br>medical and<br>healthcare |
| Interface                            | Parallel                                                       | Parallel                                                       | Parallel                                                       | Parallel                                                       | Parallel                                                       | Parallel                                                       |
| Single supply operation              | Yes                                                            | Yes                                                            | Yes                                                            | Yes                                                            | Yes                                                            | Yes                                                            |
| Dual supply operation                | Yes                                                            | Yes                                                            | Yes                                                            | Yes                                                            | Yes                                                            | Yes                                                            |
| Turn on time max. (ns)               | 150                                                            | 150                                                            | 150                                                            | 150                                                            | 150                                                            | 150                                                            |
| Crosstalk and off isolation          | -94.8                                                          | -94.8                                                          | -94.8                                                          | -94.8                                                          | -94.8                                                          | -94.8                                                          |

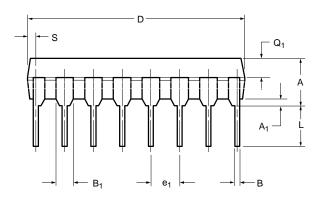

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see <a href="http://www.vishay.com/ppg273069">www.vishay.com/ppg273069</a>.

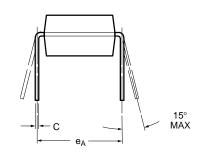

9



SOIC (NARROW): 16-LEAD


JEDEC Part Number: MS-012



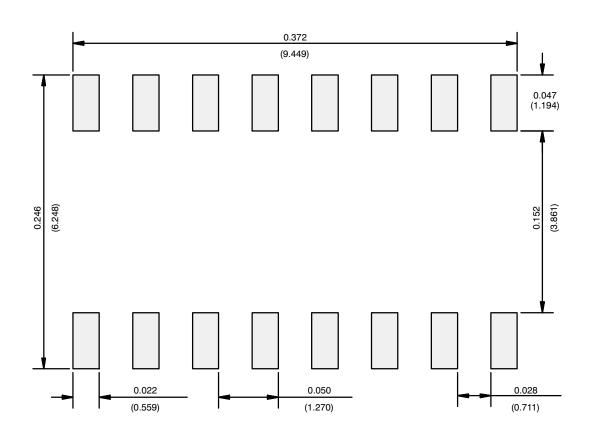



### PDIP: 16-LEAD








|                                             | MILLIN | IETERS | INC   | HES   |  |
|---------------------------------------------|--------|--------|-------|-------|--|
| Dim                                         | Min    | Max    | Min   | Max   |  |
| Α                                           | 3.81   | 5.08   | 0.150 | 0.200 |  |
| A <sub>1</sub>                              | 0.38   | 1.27   | 0.015 | 0.050 |  |
| В                                           | 0.38   | 0.51   | 0.015 | 0.020 |  |
| B <sub>1</sub>                              | 0.89   | 1.65   | 0.035 | 0.065 |  |
| С                                           | 0.20   | 0.30   | 0.008 | 0.012 |  |
| D                                           | 18.93  | 21.33  | 0.745 | 0.840 |  |
| E                                           | 7.62   | 8.26   | 0.300 | 0.325 |  |
| E <sub>1</sub>                              | 5.59   | 7.11   | 0.220 | 0.280 |  |
| <b>e</b> <sub>1</sub>                       | 2.29   | 2.79   | 0.090 | 0.110 |  |
| e <sub>A</sub>                              | 7.37   | 7.87   | 0.290 | 0.310 |  |
| L                                           | 2.79   | 3.81   | 0.110 | 0.150 |  |
| Q <sub>1</sub>                              | 1.27   | 2.03   | 0.050 | 0.080 |  |
| S                                           | 0.38   | 1.52   | .015  | 0.060 |  |
| ECN: S-03946—Rev. D, 09-Jul-01<br>DWG: 5482 |        |        |       |       |  |

# **Application Note 826**

Vishay Siliconix



#### **RECOMMENDED MINIMUM PADS FOR SO-16**



Recommended Minimum Pads Dimensions in Inches/(mm)

Return to Index



Vishay

## Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Vishay products are not designed for use in life-saving or life-sustaining applications or any application in which the failure of the Vishay product could result in personal injury or death unless specifically qualified in writing by Vishay. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

© 2025 VISHAY INTERTECHNOLOGY, INC. ALL RIGHTS RESERVED

Revision: 01-Jan-2025

1