

Vishay Siliconix

RoHS

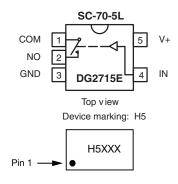
# Powered-off Protection, 0.7 $\Omega$ , 1.8 V to 5.5 V, SPST Analog Switch

#### **DESCRIPTION**

The DG2715E, DG2716E are single-pole, single-throw (SPST) analog switches designed for +1.8 V to +5.5 V operation with a single power rail. Fabricated with high density CMOS technology, the device achieves low on resistance of 0.7  $\Omega$  at a 5 V power supply, fast switching speeds (toN, toFF at 13 ns and 11 ns), and low power consumption.

The DG2715E, DG2716E feature low control logic input threshold. This logic inputs can go over V+ up to 5.5 V. Additionally, on-resistance flatness (0.15  $\Omega$ ) offer high accuracy between channels.

The DG2715E contains a normally open (NO) switch, and the DG2716E contains a normally closed switch. All switches conduct both analog and digital signals equally well in either directions when on, permit signals with amplitudes of up to V+, and block up to the power supply level when off. The DG2715E, DG2716E can withstand greater than 7 kV (human body model). A powered-off protection circuit is built into the switch to prevent an abnormal current flow from COM pin to V+ during the power-down condition. The powered-off protection feature plus the switch's high ESD and latch up current capabilities make it more reliable in designs where the part sits close to the interface. Operation temperature is specified from -40 °C to +85 °C. The DG2715E, DG2716E are available in the compact SC-70-5 package.


#### **FEATURES**

- Low switch on-resistance (0.7  $\Omega$  at 5 V)
- 1.8 V to 5.5 V single supply operation
- Powered-off protection
- Control logic inputs can go over V+ up to 5.5 V
- Low charge injection (7 pC)
- Latch-up performance exceeds 300 mA per JESD 78
- ESD tested
  - 7000 V human body model (JS-001)
  - 1000 V charge device model (JS-002)
- Material categorization: for definitions of compliance please see <a href="https://www.vishay.com/doc?99912">www.vishay.com/doc?99912</a>

#### **APPLICATIONS**


- · Smartphones and tablets
- · Consumer and computing
- · Portable instrumentation
- Audio and video signal routing
- · Medical equipment

#### **FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION**



Device marking: H5XXX XXX = date / lot traceability code

| TRUTH TABLE (DG2715E) |     |  |  |  |
|-----------------------|-----|--|--|--|
| LOGIC SWITCH          |     |  |  |  |
| 0                     | Off |  |  |  |
| 1                     | On  |  |  |  |



Device marking: H6XXX XXX = date / lot traceability code

| TRUTH TABLE (DG2716E) |        |  |  |  |
|-----------------------|--------|--|--|--|
| LOGIC                 | SWITCH |  |  |  |
| 0                     | On     |  |  |  |
| 1                     | Off    |  |  |  |

| ORDERING INFORMATION |                                 |                  |  |  |  |
|----------------------|---------------------------------|------------------|--|--|--|
| TEMP. RANGE          | TEMP. RANGE PACKAGE PART NUMBER |                  |  |  |  |
| -40 °C to +85 °C     | -40 °C to +85 °C SC-70-5        | DG2715EDL-T1-GE3 |  |  |  |
| -40 C to +85 C       | 30-70-3                         | DG2716EDL-T1-GE3 |  |  |  |

## Vishay Siliconix

| ABSOLUTE MAXIMUM RATINGS                       |                                     |             |      |  |  |
|------------------------------------------------|-------------------------------------|-------------|------|--|--|
| PARAMETER                                      |                                     | LIMIT       | UNIT |  |  |
| V+, COM, NC, NO, IN reference to GND           |                                     | -0.3 to 6   | V    |  |  |
| Continuous current (NO, NC, and COM pins)      | ± 200                               | mA          |      |  |  |
| Peak current (pulsed at 1 ms, 10 % duty cycle) |                                     | ± 300       | IIIA |  |  |
| Storage temperature                            | (D suffix)                          | -65 to +150 | °C   |  |  |
| Power dissipation (packages) <sup>a</sup>      | 5-pin SC-70 <sup>b</sup>            | 250         | mW   |  |  |
| ESD / HBM JS-001                               |                                     | 7000        | V    |  |  |
| ESD / CDM                                      | JS-002                              | 1000        | V    |  |  |
| Latch up                                       | Per JESD78 with 1.5 x voltage clamp | 200         | mA   |  |  |

#### **Notes**

- a. All leads welded or soldered to PC boardb. Derate 3.1 mW/°C above 70 °C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

| PARAMETER (V+ =                       | SYMBOL                               | TEST CONDITIONS UNLESS OTHERWISE SPECIFIED                                                         | TEMP.a                    | <b>LIMITS</b><br>-40 °C to +85 °C |         |            | UNIT |
|---------------------------------------|--------------------------------------|----------------------------------------------------------------------------------------------------|---------------------------|-----------------------------------|---------|------------|------|
|                                       |                                      | $V+ = 5 V$ , $\pm 10 \%$ , $V_{IN} = 0.8 V$ or 2.4 $V^e$                                           |                           | MIN. b                            | TYP.°   | MAX. b     |      |
| Analog Switch                         | •                                    |                                                                                                    |                           |                                   | •       |            | •    |
| Analog signal range d                 | $V_{NO}, V_{NC}, V_{COM}$            |                                                                                                    | Full                      | 0                                 | -       | V+         | V    |
| On-resistance                         | R <sub>ON</sub>                      | $V+ = 4.5 \text{ V}, V_{COM} = 0.5 \text{ V} / 2.5 \text{ V},$<br>$I_{NO}, I_{NC} = 10 \text{ mA}$ | Room<br>Full <sup>d</sup> | -                                 | 0.7     | 1.1<br>1.2 |      |
| R <sub>ON</sub> flatness <sup>d</sup> | R <sub>ON</sub> flatness             | $V+ = 4.5 \text{ V}, V_{COM} = 0 \text{ V to V+}, I_{NO}, I_{NC} = 10 \text{ mA}$                  | Room                      | -                                 | 0.11    | -          | Ω    |
|                                       | I <sub>NO(off)</sub> ,               |                                                                                                    | Room                      | -5                                | -       | 5          |      |
| O State of to all and a second f      | I <sub>NC(off)</sub>                 | V+ = 5 V,                                                                                          | Full                      | -25                               | -       | 25         |      |
| Switch off leakage current f          | 1                                    | $V_{NO}$ , $V_{NC} = 0.5 \text{ V} / 4.5 \text{ V}$ , $V_{COM} = 4.5 \text{ V} / 0.5 \text{ V}$    | Room                      | -5                                | -       | 5          | 1 .  |
|                                       | I <sub>COM(off)</sub>                |                                                                                                    | Full <sup>d</sup>         | -25                               | -       | 25         | nA   |
|                                       |                                      | V+ = 5 V, V <sub>NO</sub> , V <sub>NC</sub> = V <sub>COM</sub> = 0.5 V / 4.5 V                     | Room                      | -5                                | -       | 5          |      |
| Channel-on leakage current f          | I <sub>COM(on)</sub>                 |                                                                                                    | Full <sup>d</sup>         | -20                               | -       | 20         |      |
| Power down leakage                    | I <sub>COM(PD)</sub>                 | $V+ = 0 V, V_{COM} = 4.5 V, V_{IN} = GND$                                                          | Full <sup>d</sup>         | -1                                | -       | 1          | μΑ   |
| Digital Control                       |                                      |                                                                                                    |                           |                                   |         |            |      |
| Input high voltage                    | V <sub>INH</sub>                     |                                                                                                    | Full                      | 2.4                               | -       | -          | V    |
| Input low voltage                     | V <sub>INL</sub>                     |                                                                                                    | Full                      | -                                 | -       | 0.8        | V    |
| Input capacitance d                   | C <sub>IN</sub>                      |                                                                                                    | Full                      | -                                 | 2       | -          | pF   |
| Input current f                       | I <sub>INL</sub> or I <sub>INH</sub> | $V_{IN} = 0 \text{ V or V} +$                                                                      | Full                      | -1                                | -       | 1          | μΑ   |
| Dynamic Characteristics               |                                      |                                                                                                    |                           |                                   |         |            |      |
| Turn-on time d                        |                                      |                                                                                                    | Room                      | -                                 | 13      | 20         |      |
| rum-on time s                         | t <sub>ON</sub>                      | $V_{NO}$ or $V_{NC}$ = 3 V, $R_L$ = 300 $\Omega$ , $C_L$ = 35 pF                                   | Full <sup>d</sup>         | -                                 | -       | 25         | ns   |
| Turn-off time d                       | +                                    |                                                                                                    | Room                      | -                                 | 11      | 20         |      |
| rum-on time s                         | t <sub>OFF</sub>                     |                                                                                                    | Full <sup>d</sup>         | -                                 | -       | 25         |      |
| Charge injection <sup>d</sup>         | $Q_{INJ}$                            | $C_L = 1 \text{ nF}, V_{GEN} = 0 \text{ V}, R_{GEN} = 0 \Omega$                                    | Room                      | -                                 | -7      | -          | рС   |
| Off-isolation d                       | OIRR                                 | $R_L = 50 \Omega$ , $C_L = 5 pF$ , $f = 1 MHz$                                                     | Room                      | -                                 | -57     | -          | dB   |
| NO, NC off capacitance <sup>d</sup>   | $C_{NO(off)}, \ C_{NC(off)}$         | V <sub>IN</sub> = 0 V or V+, f = 1 MHz                                                             | Room                      | -                                 | 29      | -          | рF   |
| Channel-on capacitance d              | C <sub>ON</sub>                      | ]                                                                                                  | Room                      | -                                 | 73      | -          | 1    |
| Power Supply                          |                                      |                                                                                                    |                           |                                   |         |            |      |
| Power supply current                  | I+                                   | $V_{IN} = 0 \text{ V or V} +$                                                                      | Full                      | -                                 | 0.00005 | 1          | μΑ   |

- a. Room = 25 °C, full = as determined by the operating suffix
  b. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this datasheet
  c. Typical values are for design aid only, not guaranteed nor subject to production testing
  d. Guarantee by design, nor subjected to production test

- $V_{\rm IN}$  = input voltage to perform proper function Guaranteed by 5 V leakage testing, not production tested



www.vishay.com

## Vishay Siliconix

| SPECIFICATIONS (V+ =                | 3 V)                                 |                                                                                                              |      |                                   |         |        |        |
|-------------------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------|------|-----------------------------------|---------|--------|--------|
| PARAMETER                           | SYMBOL                               | TEST CONDITIONS SYMBOL UNLESS OTHERWISE SPECIFIED                                                            |      | <b>LIMITS</b><br>-40 °C to +85 °C |         |        | UNIT   |
|                                     |                                      | $V+ = 3 V, \pm 10 \%, V_{IN} = 0.5 V \text{ or } 1.4 V^{e}$                                                  |      | MIN. b                            | TYP. °  | MAX. b |        |
| Analog Switch                       |                                      |                                                                                                              |      |                                   |         |        |        |
| Analog signal range <sup>d</sup>    | $V_{NO}, V_{NC}, V_{COM}$            |                                                                                                              | Full | 0                                 | -       | V+     | V      |
| On-resistance                       | R <sub>ON</sub>                      | $V+ = 2.7 \text{ V}, V_{COM} = 1.5 \text{ V},$                                                               | Room | -                                 | 0.96    | 1.2    |        |
| On-resistance                       | TION                                 | $I_{NO}$ , $I_{NC} = 100 \text{ mA}$                                                                         | Full | -                                 | -       | 1.3    | Ω      |
| R <sub>ON</sub> flatness            | R <sub>ON</sub> flatness             | $V+ = 2.7 \text{ V}, V_{COM} = 0.6 \text{ V}, 1.5 \text{ V}, 2.1 \text{ V}, I_{NO}, I_{NC} = 100 \text{ mA}$ | Room | -                                 | 0.15    | ı      | - 32   |
|                                     | I <sub>NO(off)</sub> ,               |                                                                                                              | Room | -3                                | -       | 3      |        |
| Switch off leakage current          | I <sub>NC(off)</sub>                 | V+ = 3.3 V,                                                                                                  | Full | -10                               | -       | 10     |        |
| Switch on leakage current           |                                      | $V_{NO}$ , $V_{NC} = 0.3 \text{ V} / 3 \text{ V}$ , $V_{COM} = 3 \text{ V} / 0.3 \text{ V}$                  | Room | -3                                | -       | 3      | nA     |
|                                     | I <sub>COM(off)</sub>                |                                                                                                              | Full | -10                               | -       | 10     |        |
| Channel on leakage assurent         |                                      | $I_{COM(on)}$ V+ = 3.3 V, $V_{NO}$ , $V_{NC} = V_{COM} = 0.3 V / 3 V$                                        | Room | -3                                | -       | 3      |        |
| Channel-on leakage current          | ICOM(on)                             |                                                                                                              | Full | -10                               | -       | 10     |        |
| Digital Control                     |                                      |                                                                                                              |      |                                   |         |        |        |
| Input high voltage                  | V <sub>INH</sub>                     |                                                                                                              | Full | 1.4                               | -       | -      | \<br>\ |
| Input low voltage                   | $V_{INL}$                            |                                                                                                              | Full | -                                 | -       | 0.5    | V      |
| Input capacitance d                 | C <sub>IN</sub>                      |                                                                                                              | Full | -                                 | 2       |        | pF     |
| Input current                       | I <sub>INL</sub> or I <sub>INH</sub> | $V_{IN} = 0 \text{ V or V} +$                                                                                | Full | -1                                | -       | 1      | μA     |
| Dynamic Characteristics             |                                      |                                                                                                              |      |                                   |         |        |        |
| Turn-on time                        |                                      |                                                                                                              | Room | -                                 | 20      | 25     |        |
| rum-on time                         | t <sub>ON</sub>                      | $V_{NO}$ or $V_{NC} = 1.5 \text{ V}$ . $R_1 = 50 \Omega$ . $C_1 = 35 \text{ pF}$                             | Full | -                                 | -       | 30     | no     |
| Turn-off time                       |                                      | $V_{NO}$ or $V_{NC} = 1.5 \text{ V}$ , $H_L = 50 \Omega$ , $G_L = 35 \text{ pr}$                             | Room | -                                 | 15      | 21     | ns     |
| rum-on time                         | t <sub>OFF</sub>                     |                                                                                                              | Full | -                                 | -       | 28     |        |
| Charge injection <sup>d</sup>       | Q <sub>INJ</sub>                     | $C_L = 1 \text{ nF, } V_{GEN} = 0 \text{ V, } R_{GEN} = 0 \Omega$                                            | Room | -                                 | -12     | -      | рС     |
| Off-isolation d                     | OIRR                                 | $R_L = 50 \Omega, C_L = 5 pF, f = 1 MHz$                                                                     | Room | -                                 | -57     | -      | dB     |
| NO, NC off capacitance <sup>d</sup> | $C_{NO(off)}, \ C_{NC(off)}$         | V <sub>IN</sub> = 0 V or V+, f = 1 MHz                                                                       | Room | -                                 | 30      | -      | pF     |
| Channel-on capacitance d            | C <sub>ON</sub>                      |                                                                                                              | Room | -                                 | 73      | -      |        |
| Power Supply                        | •                                    |                                                                                                              |      |                                   |         |        |        |
| Power supply current                | I+                                   | V+ = 3.6 V, V <sub>IN</sub> = 0 V or V+                                                                      | Full | -                                 | 0.00003 | 1      | μA     |
|                                     |                                      |                                                                                                              |      |                                   |         | _      |        |

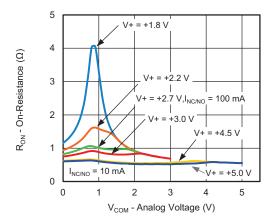
#### Notes

- a. Room = 25 °C, full = as determined by the operating suffix
- b. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this datasheet
- c. Typical values are for design aid only, not guaranteed nor subject to production testing
- d. Guarantee by design, nor subjected to production test
- e. V<sub>IN</sub> = input voltage to perform proper function
- f. Guaranteed by 3 V leakage testing, not production tested

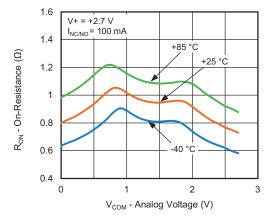


www.vishay.com

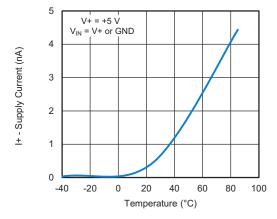
Vishay Siliconix


| SPECIFICATIONS (V+ = 1.8 V)             |                                             |                                                                                            |                   |                                   |        |        |      |
|-----------------------------------------|---------------------------------------------|--------------------------------------------------------------------------------------------|-------------------|-----------------------------------|--------|--------|------|
| PARAMETER                               | SYMBOL                                      | TEST CONDITIONS UNLESS OTHERWISE SPECIFIED                                                 | TEMP.a            | <b>LIMITS</b><br>-40 °C to +85 °C |        |        | UNIT |
|                                         |                                             | $V+ = 1.8 V$ , $\pm 10 \%$ , $V_{IN} = 0.4 V$ or 1 $V^e$                                   |                   | MIN. b                            | TYP. c | MAX. b |      |
| Analog Switch                           |                                             |                                                                                            |                   |                                   |        |        |      |
| Analog signal range <sup>d</sup>        | $V_{NO}, V_{NC}, V_{COM}$                   |                                                                                            | Full              | 0                                 | -      | V+     | V    |
| On-resistance                           | R <sub>ON</sub>                             | $V+ = 1.8 V, V_{COM} = 0.9 V,$                                                             | Room              | -                                 | 4      | 7      | Ω    |
| Officeistance                           | TION                                        | $I_{NO}$ , $I_{NC} = 10 \text{ mA}$                                                        | Full <sup>d</sup> | -                                 | -      | 11     | 22   |
|                                         | I <sub>NO(off),</sub>                       |                                                                                            | Room              | -2                                | -      | 2      |      |
| Switch off leakage current <sup>f</sup> | I <sub>NC(off)</sub>                        | V+ = 2 V,<br>$V_{NO}, V_{NC} = 0.2 V / 1.8 V,$                                             | Full <sup>d</sup> | -5                                | -      | 5      |      |
| Owiter on leakage current               | loove m                                     | $V_{COM} = 1.8 \text{ V} / 0.2 \text{ V}$                                                  | Room              | -2                                | -      | 2      | nA   |
|                                         | I <sub>COM(off)</sub>                       | 00                                                                                         | Full <sup>d</sup> | -5                                | -      | 5      | 11/  |
| Channel-on leakage current f            | laa.u. s                                    | $V+ = 2 V$ , $V_{NO}$ , $V_{NC} = V_{COM} = 0.2 V / 1.8 V$                                 | Room              | Room -2 -                         | 2      |        |      |
| Chamer-on leakage current               | ICOM(on)                                    | $I_{COM(on)}$ V+ = 2 V, $V_{NO}$ , $V_{NC} = V_{COM} = 0.2 \text{ V} / 1.8 \text{ V}$      | Full <sup>d</sup> | -5                                | -      | 5      |      |
| Digital Control                         |                                             |                                                                                            |                   |                                   |        |        |      |
| Input high voltage                      | $V_{INH}$                                   |                                                                                            | Full              | 1                                 | -      | -      | v    |
| Input low voltage                       | $V_{INL}$                                   |                                                                                            | Full              | -                                 | -      | 0.4    | V    |
| Input capacitance <sup>d</sup>          | C <sub>IN</sub>                             |                                                                                            | Full              | -                                 | 2      | -      | pF   |
| Input current f                         | I <sub>INL</sub> or I <sub>INH</sub>        | $V_{IN} = 0 V \text{ or } V+$                                                              | Full              | -1                                | -      | 1      | μΑ   |
| Dynamic Characteristics                 |                                             |                                                                                            |                   |                                   |        |        |      |
| Turn-on time <sup>d</sup>               | ton                                         |                                                                                            | Room              | -                                 | 35     | 40     |      |
| Turn-on time                            |                                             | $V_{NO}$ or $V_{NC} = 1.5 \text{ V}$ , $R_{I} = 50 \Omega$ , $C_{I} = 35 \text{ pF}$       | Full <sup>d</sup> | -                                 | -      | 43     | ns   |
| Turn-off time <sup>d</sup>              | +                                           | ν <sub>NO</sub> οι ν <sub>NC</sub> = 1.5 ν, η <sub>L</sub> = 30 22, Θ <sub>L</sub> = 35 βι | Room              | -                                 | 27     | 40     | 115  |
| rum-on time -                           | Turn-off time <sup>d</sup> t <sub>OFF</sub> |                                                                                            | Full <sup>d</sup> | -                                 | -      | 43     |      |
| Charge injection <sup>d</sup>           | $Q_{INJ}$                                   | $C_L$ = 1 nF, $V_{GEN}$ = 0 V, $R_{GEN}$ = 0 $\Omega$                                      | Room              | -                                 | -9     | -      | рС   |
| Off-isolation <sup>d</sup>              | OIRR                                        | $R_L = 50 \Omega$ , $C_L = 5 pF$ , $f = 1 MHz$                                             | Room              | -                                 | -57    | -      | dB   |
| NO, NC off capacitance d                | $C_{NO(off)}, \ C_{NC(off)}$                | V <sub>IN</sub> = 0 V or V+, f = 1 MHz                                                     | Room              | -                                 | 31     | -      | pF   |
| Channel-on capacitance d                | C <sub>ON</sub>                             |                                                                                            | Room              | -                                 | 70     | -      |      |

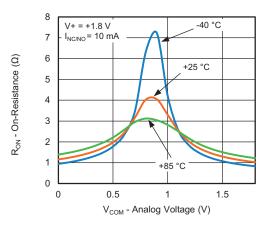
#### Notes


- a. Room = 25 °C, full = as determined by the operating suffix
- b. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this datasheet
- c. Typical values are for design aid only, not guaranteed nor subject to production testing
- d. Guarantee by design, nor subjected to production test
- e.  $V_{IN}$  = input voltage to perform proper function
- f. Guaranteed by 3 V leakage testing, not production tested

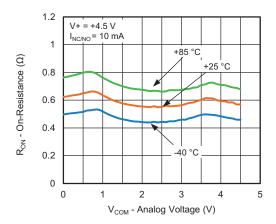



## **TYPICAL CHARACTERISTICS** (T<sub>A</sub> = 25 °C, unless otherwise noted)

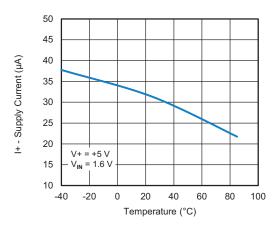



R<sub>DS(on)</sub> vs. V<sub>COM</sub> vs. V+




R<sub>DS(on)</sub> vs. V<sub>COM</sub>, and Temperature

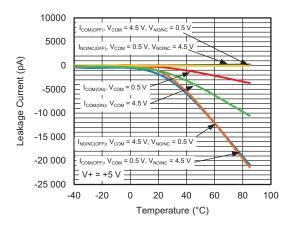



Supply Current vs. Temperature

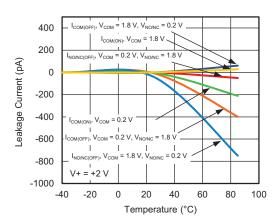


R<sub>DS(on)</sub> vs. V<sub>COM</sub>, and Temperature

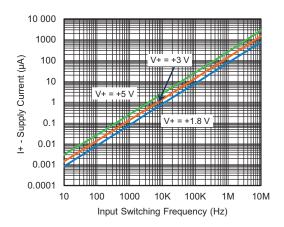



R<sub>DS(on)</sub> vs. V<sub>COM</sub>, and Temperature

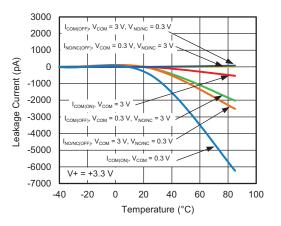



Supply Current vs. Temperature

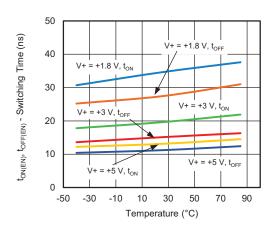



## **TYPICAL CHARACTERISTICS** (T<sub>A</sub> = 25 °C, unless otherwise noted)

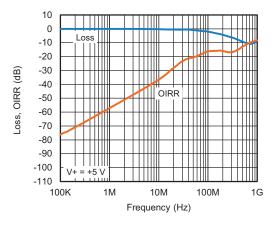



Leakage Current vs. Temperature




Leakage Current vs. Temperature

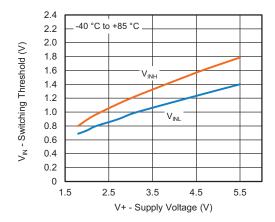



**Supply Current vs. Input Switching Frequency** 

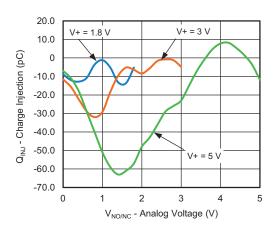


Leakage Current vs. Temperature

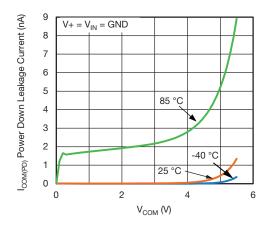



Switching Time vs. Temperature

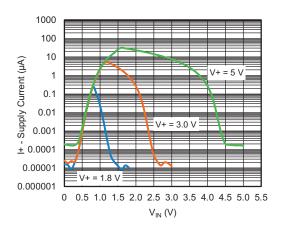



Insertion Loss, Off-Isolation vs. Frequency

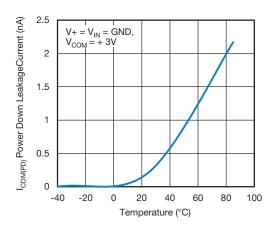



## **TYPICAL CHARACTERISTICS** (T<sub>A</sub> = 25 °C, unless otherwise noted)




Switching Threshold vs. Supply Voltage

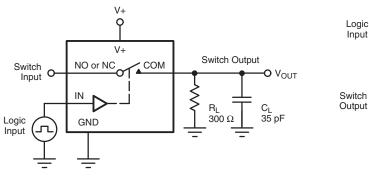



Charge Injection vs. Analog Voltage



Power Down Leakage Current vs. V<sub>COM</sub>




Supply Current vs VIN

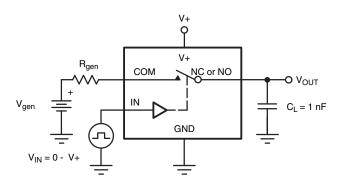


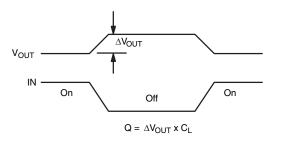
Power Down Leakage Current vs. Temperature

## Vishay Siliconix

#### **TEST CIRCUITS**

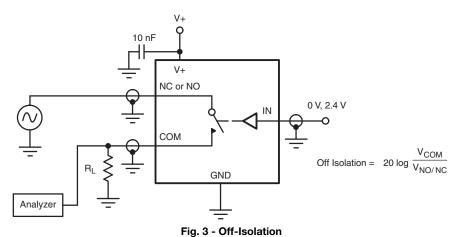



VINH  $t_{r} < 5 \text{ ns}$   $t_{f} < 5 \text{ ns}$   $t_{f} < 5 \text{ ns}$   $t_{OFF}$ 


C<sub>L</sub> (includes fixture and stray capacitance)

$$V_{OUT} = V_{COM} \left( \frac{R_L}{R_L + R_{ON}} \right)$$

Logic "1" = Switch On Logic input waveforms inverted for switches that have the opposite logic sense.


Fig. 1 - Switching Time





IN depends on switch configuration: input polarity determined by sense of switch.

Fig. 2 - Charge Injection



### **TEST CIRCUITS**

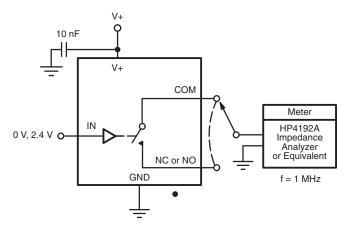



Fig. 4 - Channel Off / On Capacitance



www.vishay.com

## Vishay Siliconix

| PRODUCT SUMMARY                   |                                                                  |                                                                  |
|-----------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|
| Part number                       | DG2715E                                                          | DG2716E                                                          |
| Status code                       | 2                                                                | 2                                                                |
| Configuration                     | SPST x 1, NO                                                     | SPST x 1, NC                                                     |
| Single supply min. (V)            | 1.8                                                              | 1.8                                                              |
| Single supply max. (V)            | 5.5                                                              | 5.5                                                              |
| Dual supply min. (V)              | -                                                                | -                                                                |
| Dual supply max. (V)              | -                                                                | -                                                                |
| On-resistance (Ω)                 | 0.7                                                              | 0.7                                                              |
| Charge injection (pC)             | -7                                                               | -7                                                               |
| Source on capacitance (pF)        | 73                                                               | 73                                                               |
| Source off capacitance (pF)       | 29                                                               | 29                                                               |
| Leakage switch on typ. (nA)       | -                                                                | -                                                                |
| Leakage switch off max. (nA)      | -5                                                               | 5                                                                |
| -3 dB bandwidth (MHz)             | -                                                                | -                                                                |
| Package                           | SC-70-5                                                          | SC-70-5                                                          |
| Functional circuit / applications | Multi purpose, instrumentation, medical and healthcare, portable | Multi purpose, instrumentation, medical and healthcare, portable |
| Interface                         | Parallel                                                         | Parallel                                                         |
| Single supply operation           | Yes                                                              | Yes                                                              |
| Dual supply operation             | -                                                                | -                                                                |
| Turn on time max. (ns)            | 25                                                               | 25                                                               |
| Crosstalk and off isolation       | -57                                                              | -57                                                              |

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package / tape drawings, part marking, and reliability data, see <a href="https://www.vishay.com/ppg?75025">www.vishay.com/ppg?75025</a>.



## **Legal Disclaimer Notice**

Vishay

## **Disclaimer**

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Vishay products are not designed for use in life-saving or life-sustaining applications or any application in which the failure of the Vishay product could result in personal injury or death unless specifically qualified in writing by Vishay. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.