

www.vishay.com

Vishay Siliconix

Automotive P-Channel 20 V (D-S) 175 °C MOSFET

PowerPAK® SC-70-6L Single

Marking Code: QGXXXX

PRODUCT SUMMARY								
V _{DS} (V)	-20							
$R_{DS(on)}$ (Ω) at $V_{GS} = -4.5 \text{ V}$	0.113							
$R_{DS(on)}$ (Ω) at $V_{GS} = -2.5 \text{ V}$	0.200							
I _D (A)	-2.68							
Configuration	Single							
Package	PowerPAK SC-70							

FEATURES

- TrenchFET® power MOSFET
- AEC-Q101 qualified ^d
- 100 % R_q and UIS tested
- Material categorization: for definitions of compliance please see www.vishav.com/doc?99912

(1, 2, 5, 6) D O
+
O (4) S

PARAMETER PARAMETER	, 5	SYMBOL	LIMIT	UNIT	
Drain-source voltage		V _{DS}	-20	.,	
Gate-source voltage		V_{GS}	V		
O alliana administration	T _C = 25 °C		-2.68		
Continuous drain current	T _C = 125 °C	I _D	-1.55		
Continuous source current (diode conduct	tion) ^a	I _S	3.75	Α	
Pulsed drain current ^b	I _{DM}	10			
Single pulse avalanche current		I _{AS}	-7		
Single pulse avalanche energy	L = 0.1 mH	E _{AS}	2.45	mJ	
Maximum payor dissination h	T _C = 25 °C	5	13.6	W	
Maximum power dissipation ^b	T _C = 125 °C	P_{D}	4.5	VV	
Operating junction and storage temperatu	T _J , T _{stg}	-55 to +175	°C		

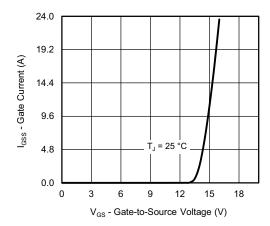
THERMAL RESISTANCE RATINGS								
PARAMETER		SYMBOL	LIMIT	UNIT				
Junction-to-ambient	PCB mount c	R _{thJA}	90	°C/W				
Junction-to-case (drain)		R_{thJF}	11	C/VV				

Notes

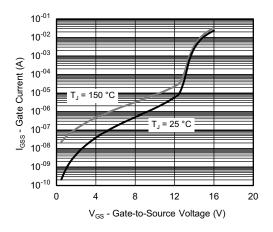
- a. Package limited
- b. Pulse test; pulse width \leq 300 μ s, duty cycle \leq 2 %
- c. When mounted on 1" square PCB (FR4 material)
- d. Parametric verification ongoing

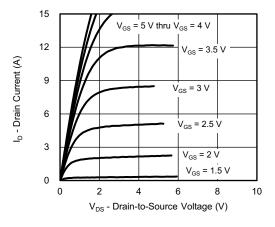
www.vishay.com Vishay Siliconix

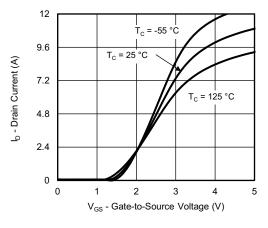
PARAMETER	SYMBOL	TES	MIN.	TYP.	MAX.	UNIT		
Static					L	L	l	
Drain-source breakdown voltage	V _{DS}	$V_{GS} = 0$, $I_D = -250 \mu A$		-20	-	-	.,	
Gate-source threshold voltage	V _{GS(th)}	V _{DS} =	V _{GS} , I _D = -250 μA	-0.6	-1.0	-1.5	V	
Cata assuma laskaga		V _{DS} =	-	-	± 100	nA		
Gate-source leakage	I _{GSS}	V _{DS} =	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 8 \text{ V}$			± 5		
		$V_{GS} = 0 V$	V _{DS} = -20 V	-	-	-1		
Zero gate voltage drain current	I _{DSS}	$V_{GS} = 0 V$	V _{DS} = -20 V, T _J = 125 °C	-	-	-50	- μA -	
		V _{GS} = 0 V	V _{DS} = -20 V, T _J = 175 °C	-	-	-150		
On-state drain current a	I _{D(on)}	$V_{GS} = -4.5 \text{ V}$	$V_{DS} \ge 5 V$	-8	-	-	Α	
		$V_{GS} = -4.5 \text{ V}$	I _D = -2 A	-	0.093	0.113		
Duta a succession of the succe	Б.	V _{GS} = -4.5 V	I _D = -2 A, T _J = 125 °C	-	-	0.161		
Drain-source on-state resistance a	R _{DS(on)}	V _{GS} = -4.5 V	I _D = -2 A, T _J = 175 °C	-	-	0.184	Ω	
		V _{GS} = -2.5 V	I _D = -2 A	-	0.165	0.200		
Forward transconductance b	9 _{fs}	V _{DS} = -10 V, I _D = -2 A		-	4.7	-	S	
Dynamic ^b		<u> </u>						
Input capacitance	C _{iss}			-	298	375		
Output capacitance	C _{oss}	V _{GS} = 0 V V _{DS} = -10 V, f = 1 MHz		-	104	130	pF	
Reverse transfer capacitance	C _{rss}				56	70		
Total gate charge ^c	Qg				4.2	5.3		
Gate-source charge c	Q _{gs}	$V_{GS} = -4.5 \text{ V}$	$V_{GS} = -4.5 \text{ V}$ $V_{DS} = -10 \text{ V}, I_D = -2.4 \text{ A}$		0.75	-	nC	
Gate-drain charge c	Q _{gd}				1.2	-		
Gate resistance	R _g	f = 1 MHz		5.1	8.6	14	Ω	
Turn-on delay time c	t _{d(on)}				9	11.1	ns	
Rise time ^c	t _r	$V_{DD} =$	-	17	21.4			
Turn-off delay time ^c	t _{d(off)}	I _D ≅ -1.9 A,	-	19	24			
Fall time ^c	t _f	7	-	8	10			
Source-Drain Diode Ratings and Char	acteristics	•						
Pulsed current ^a	I _{SM}			-	-	-12.7	Α	
Forward voltage	V_{SD}	I _F :	-	-0.8	-1.2	V		

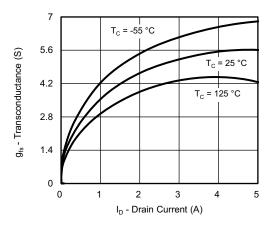

Notes

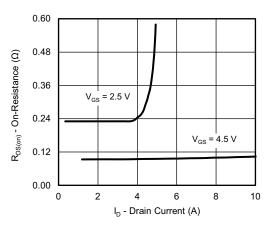
- a. Pulse test; pulse width $\leq 300~\mu s,~duty~cycle \leq 2~\%$
- b. Guaranteed by design, not subject to production testing
- c. Independent of operating temperature


Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

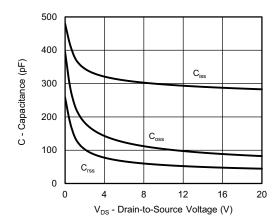

TYPICAL CHARACTERISTICS (T_A = 25 °C, unless otherwise noted)

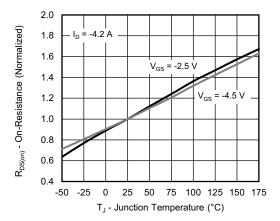

Gate Current vs. Gate-Source Voltage

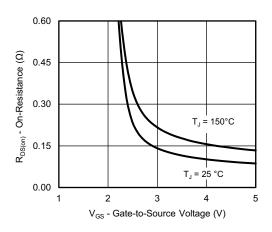

Gate Current vs. Gate-Source Voltage

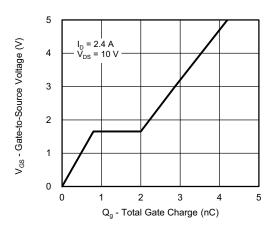

Output Characteristics

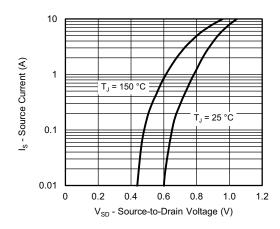
Transfer Characteristics

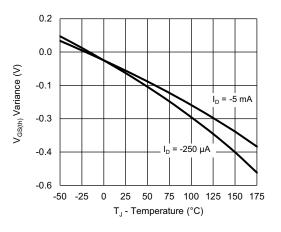

Transconductance


On-Resistance vs. Drain Current

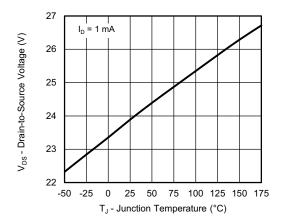

TYPICAL CHARACTERISTICS (T_A = 25 °C, unless otherwise noted)

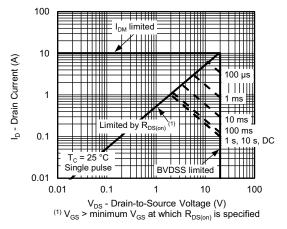

Capacitance


On-Resistance vs. Junction Temperature

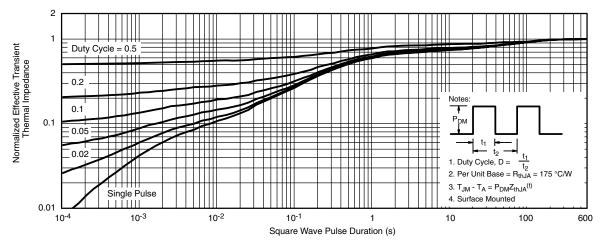

On-Resistance vs. Gate-to-Source Voltage

Gate Charge


Source-Drain Diode Forward Voltage

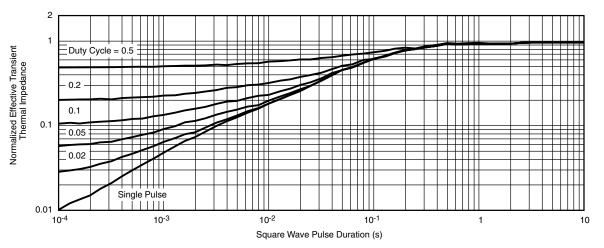

Threshold Voltage

TYPICAL CHARACTERISTICS (T_A = 25 °C, unless otherwise noted)



Drain Source Breakdown vs. Junction Temperature

Safe Operating Area


THERMAL RATINGS (T_A = 25 °C, unless otherwise noted)

Normalized Thermal Transient Impedance, Junction-to-Ambient

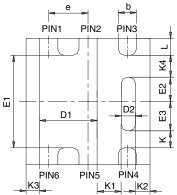
THERMAL RATINGS (T_A = 25 °C, unless otherwise noted)

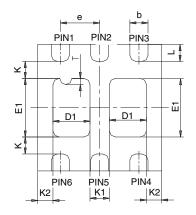
Normalized Thermal Transient Impedance, Junction-to-Foot

Note

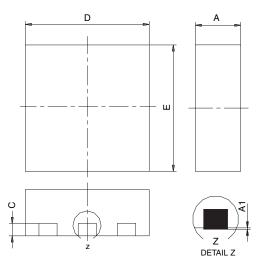
- The characteristics shown in the two graphs
 - Normalized Transient Thermal Impedance Junction-to-Ambient (25 °C)
 - Normalized Transient Thermal Impedance Junction-to-Foot (25 °C)

are given for general guidelines only to enable the user to get a "ball park" indication of part capabilities. The data are extracted from single pulse transient thermal impedance characteristics which are developed from empirical measurements. The latter is valid for the part mounted on printed circuit board - FR4, size 1" x 1" x 0.062", double sided with 2 oz. copper, 100 % on both sides. The part capabilities can widely vary depending on actual application parameters and operating conditions.


Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package / tape drawings, part marking, and reliability data, see www.vishay.com/ppg275957.



Vishay Siliconix

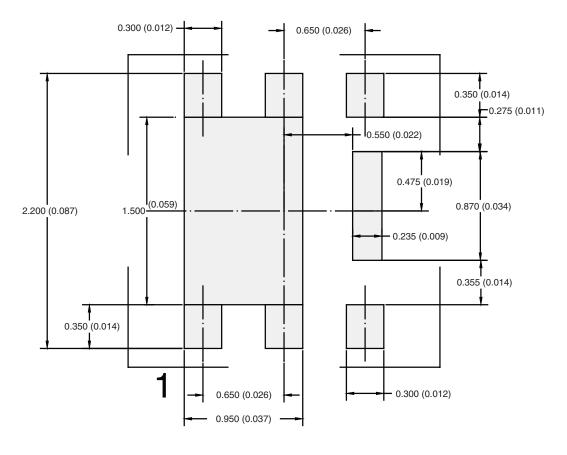

PowerPAK® SC70-6L

BACKSIDE VIEW OF SINGLE

BACKSIDE VIEW OF DUAL

- All dimensions are in millimeters
 Package outline exclusive of mold flash and metal burr
 Package outline inclusive of plating

	SINGLE PAD						DUAL PAD						
DIM	MILLIMETERS			INCHES			MILLIMETERS			INCHES			
	Min	Nom	Max	Min	Nom	Max	Min	Nom	Max	Min	Nom	Max	
Α	0.675	0.75	0.80	0.027	0.030	0.032	0.675	0.75	0.80	0.027	0.030	0.032	
A1	0	-	0.05	0	-	0.002	0	-	0.05	0	-	0.002	
b	0.23	0.30	0.38	0.009	0.012	0.015	0.23	0.30	0.38	0.009	0.012	0.015	
С	0.15	0.20	0.25	0.006	0.008	0.010	0.15	0.20	0.25	0.006	0.008	0.010	
D	1.98	2.05	2.15	0.078	0.081	0.085	1.98	2.05	2.15	0.078	0.081	0.085	
D1	0.85	0.95	1.05	0.033	0.037	0.041	0.513	0.613	0.713	0.020	0.024	0.028	
D2	0.135	0.235	0.335	0.005	0.009	0.013							
E	1.98	2.05	2.15	0.078	0.081	0.085	1.98	2.05	2.15	0.078	0.081	0.085	
E1	1.40	1.50	1.60	0.055	0.059	0.063	0.85	0.95	1.05	0.033	0.037	0.041	
E2	0.345	0.395	0.445	0.014	0.016	0.018							
E3	0.425	0.475	0.525	0.017	0.019	0.021							
е		0.65 BSC			0.026 BSC	;	0.65 BSC			0.026 BSC			
K		0.275 TYP			0.011 TYP		0.275 TYP			0.011 TYP			
K1		0.400 TYP			0.016 TYP			0.320 TYP			0.013 TYP		
K2		0.240 TYP		0.009 TYP		0.252 TYP			0.010 TYP				
К3		0.225 TYP		0.009 TYP					•	•			
K4		0.355 TYP		0.014 TYP									
L	0.175	0.275	0.375	0.007	0.011	0.015	0.175	0.275	0.375	0.007	0.011	0.015	
T							0.05	0.10	0.15	0.002	0.004	0.006	


ECN: C-07431 - Rev. C, 06-Aug-07

DWG: 5934

06-Aug-07

RECOMMENDED PAD LAYOUT FOR PowerPAK® SC70-6L Single

Dimensions in mm/(Inches)

Return to Index

ATTLICATION NOT

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Vishay products are not designed for use in life-saving or life-sustaining applications or any application in which the failure of the Vishay product could result in personal injury or death unless specifically qualified in writing by Vishay. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.