Automotive Photovoltaic MOSFET Driver
With Integrated Fast Turn-Off

DESCRIPTION
The VOMDA1271 is an automotive qualified optically
isolated MOSFET driver. The VOMDA1271 obtains all the
required current to drive its internal circuitry from the
infrared emitter on the low voltage, primary side of the
isolation barrier. No power supply is needed to provide VCC.
The VOMDA1271 features a turn-off circuit to achieve a fast
turn off of the MOSFET.

FEATURES
• AEC-Q102 qualified
• Open circuit voltage of 8.5 V typical
 at If = 10 mA
• Short circuit current at 15 μA typical
 at If = 10 mA
• Isolation test voltage 3750 VRMS
• Operating temperature from -40 °C to
 +125 °C
• Material categorization:
 for definitions of compliance please see
 www.vishay.com/doc?99912

APPLICATIONS
• Automotive pre-charge relay
• Powerwall chargers
• Gate driver for High Voltage MOSFETs
• BMS
• Custom solid-state relays

AGENCY APPROVALS
• UL (pending)
• cUL (pending)
• VDE (pending)
• CQC (pending)

LINKS TO ADDITIONAL RESOURCES
ORDERING INFORMATION

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Tape and Reel</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOMDA1271T</td>
<td>SOP-4</td>
</tr>
</tbody>
</table>

PACKAGE

- UL, cUL, VDE, CQC

Note

- The product is available only on tape and reel

ABSOLUTE MAXIMUM RATINGS \((T_{amb} = 25 \, ^\circ\text{C}, \text{unless otherwise specified}) \)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITION</th>
<th>SYMBOL</th>
<th>VALUE</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>LED continuous forward current</td>
<td></td>
<td>(I_F)</td>
<td>50</td>
<td>mA</td>
</tr>
<tr>
<td>LED reverse voltage</td>
<td></td>
<td>(V_R)</td>
<td>5</td>
<td>V</td>
</tr>
<tr>
<td>Power dissipation</td>
<td></td>
<td>(P_{diss})</td>
<td>80</td>
<td>mW</td>
</tr>
<tr>
<td>Power derating (T_{amb} > 80 , ^\circ\text{C})</td>
<td></td>
<td>(\Delta P_{diss}/\Delta T_{amb})</td>
<td>-1.3</td>
<td>mW/°C</td>
</tr>
</tbody>
</table>

MOSFET DRIVER

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITION</th>
<th>SYMBOL</th>
<th>VALUE</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power dissipation</td>
<td></td>
<td>(P_{diss})</td>
<td>2</td>
<td>mW</td>
</tr>
<tr>
<td>Ambient operating temperature range</td>
<td></td>
<td>(T_{amb})</td>
<td>-40 to +125</td>
<td>°C</td>
</tr>
<tr>
<td>Storage temperature range</td>
<td></td>
<td>(T_{stg})</td>
<td>-40 to +150</td>
<td>°C</td>
</tr>
<tr>
<td>Pin soldering temperature</td>
<td></td>
<td>(T_{sld})</td>
<td>260</td>
<td>°C</td>
</tr>
</tbody>
</table>

ELECTRICAL CHARACTERISTICS \((T_{amb} = 25 \, ^\circ\text{C}, \text{unless otherwise specified}) \)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITION</th>
<th>SYMBOL</th>
<th>MIN.</th>
<th>TYP.</th>
<th>MAX.</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>LED forward voltage</td>
<td></td>
<td>(V_F)</td>
<td>1.3</td>
<td>1.4</td>
<td>1.5</td>
<td>V</td>
</tr>
<tr>
<td>Open circuit voltage</td>
<td></td>
<td>(V_{OC})</td>
<td>-</td>
<td>8.2</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td>Short circuit current</td>
<td></td>
<td>(I_{SC})</td>
<td>-</td>
<td>7</td>
<td>-</td>
<td>μA</td>
</tr>
</tbody>
</table>

Note

- Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operational sections of this document. Exposure to absolute maximum ratings for extended periods of the time can adversely affect reliability.

SWITCHING CHARACTERISTICS \((T_{amb} = 25 \, ^\circ\text{C}, \text{unless otherwise specified}) \)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITION</th>
<th>SYMBOL</th>
<th>MIN.</th>
<th>TYP.</th>
<th>MAX.</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turn-on time (C_L = 200 , \text{pF}, R_L = 10 , \text{MΩ}), (I_F = 20 , \text{mA}, P_W = 2 , \text{ms},) duty cycle = 50 %</td>
<td></td>
<td>(t_{on})</td>
<td>-</td>
<td>32</td>
<td>-</td>
<td>μs</td>
</tr>
<tr>
<td>Turn-off time</td>
<td></td>
<td>(t_{off})</td>
<td>-</td>
<td>80</td>
<td>-</td>
<td>μs</td>
</tr>
</tbody>
</table>

For technical questions within your region: optocoupleranswers@vishay.com, www.vishay.com/doc?91000
SAFETY AND INSULATION RATINGS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITION</th>
<th>SYMBOL</th>
<th>VALUE</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climatic classification</td>
<td>According to IEC 68 part 1</td>
<td></td>
<td>40 / 125 / 21</td>
<td></td>
</tr>
<tr>
<td>Pollution degree</td>
<td>According to DIN VDE 0109</td>
<td>CTI</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Comparative tracking index</td>
<td>Insulation group IIIa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum rated withstanding isolation voltage</td>
<td>According to UL1577, t = 1 min</td>
<td>VISO</td>
<td>3750</td>
<td>V_RMS</td>
</tr>
<tr>
<td>Maximum transient isolation voltage</td>
<td>According to DIN EN 60747-5-5</td>
<td>VDTM</td>
<td>6000</td>
<td>V_peak</td>
</tr>
<tr>
<td>Maximum repetitive peak isolation voltage</td>
<td>According to DIN EN 60747-5-5</td>
<td>VDRM</td>
<td>707</td>
<td>V_peak</td>
</tr>
<tr>
<td>Isolation resistance</td>
<td>Tamb = 125 °C, VIO = 500 V</td>
<td>RIO</td>
<td>≥ 10^{12}</td>
<td>Ω</td>
</tr>
<tr>
<td></td>
<td>Tamb = TS, VIO = 500 V</td>
<td>RIO</td>
<td>≥ 10^{11}</td>
<td>Ω</td>
</tr>
<tr>
<td>Output safety power</td>
<td>PSO</td>
<td>350</td>
<td>mW</td>
<td></td>
</tr>
<tr>
<td>Input safety current</td>
<td>ISI</td>
<td>150</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>Input safety temperature</td>
<td>TS</td>
<td>175</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Creepage distance</td>
<td>SOP-4</td>
<td></td>
<td>≥ 5</td>
<td>mm</td>
</tr>
<tr>
<td>Clearance distance</td>
<td></td>
<td></td>
<td>≥ 5</td>
<td>mm</td>
</tr>
<tr>
<td>Input to output test voltage, method B</td>
<td>V_DDM × 1.875 = V_PR, 100 % production test with t_M = 1 s, partial discharge < 5 pC</td>
<td>V_PR</td>
<td>1326</td>
<td>V_peak</td>
</tr>
<tr>
<td>Input to output test voltage, method A</td>
<td>V_DRM × 1.6 = V_PR, 100 % production test with t_M = 10 s, partial discharge < 5 pC</td>
<td>V_PR</td>
<td>1131</td>
<td>V_peak</td>
</tr>
</tbody>
</table>

Note

- As per DIN EN 60747-5-5, § 7.4.3.8.2, this optocoupler is suitable for “safe electrical insulation” only within the safety ratings. Compliance with the safety ratings shall be ensured by means of protective circuits.
APPLICATION EXAMPLES

![Bidirectional MOSFET Driver Application](image)

Fig. 2 - Typical MOSFET Driver Applications With Integrated Turn-Off Functionality

TYPICAL CHARACTERISTICS \(T_{\text{amb}} = 25 \, ^{\circ}\text{C}, \) unless otherwise specified

![Forward Current vs. Forward Voltage](image)

Fig. 3 - Forward Current vs. Forward Voltage

![Open Circuit Voltage vs. Ambient Temperature](image)

Fig. 5 - Open Circuit Voltage vs. Ambient Temperature

![Forward Current vs. Ambient Temperature](image)

Fig. 4 - Forward Current vs. Ambient Temperature

![Output Voltage vs. Forward Current](image)

Fig. 6 - Output Voltage vs. Forward Current
Fig. 7 - Short Circuit Current vs. Forward Current

Fig. 8 - Output Current vs. Output Voltage

Fig. 9 - Short Circuit Current vs. Ambient Temperature

Fig. 10 - Turn-On Time vs. Forward Current

Fig. 11 - Turn-On Time vs. Ambient Temperature

Fig. 12 - Turn-Off Time vs. Forward Current
Fig. 13 - Turn-Off Time vs. Ambient Temperature

PACKAGE DIMENSIONS (in millimeters)

Fig. 14 - Package Drawing
PACKAGE MARKING

Fig. 15 - VOMDA1271

Notes
- XXXX = LMC (lot marking code)
- Package configuration (T, M) are not part of the package marking

TAPE AND REEL PACKAGING

Dimensions in millimeters

Note:
- Cumulative tolerance of 10 spocket holes is 0.20 mm

Fig. 16 - Tape and Reel Shipping Medium
(EIA-481, revision A, and IEC 60286), 2000 units per reel

Fig. 17 - Tape and Reel Packing (2000 pieces on reel)
HANDLING AND STORAGE CONDITIONS

ESD level: HBM class 2

Floor life: 168 h

Conditions: $T_{\text{amb}} < 30 \, ^\circ\text{C}$, RH $\leq 60 \, %$

Moisture sensitivity level 3, according to J-STD-020

Fig. 18 - Lead (Pb)-free Reflow Solder Profile
According to J-STD-020 for SMD Devices
Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay’s knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer’s responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer’s technical experts. Product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.