

Automotive Phototransistor Optocoupler, 4 Pin LSOP, Long Creepage Mini-Flat Package

DESCRIPTION

The VOLA617A series has an infrared emitting diode, which is optically coupled to a silicon planar phototransistor detector, and is incorporated in a 4-pin LSOP mini-flat package with long creepage.

It features a high current transfer ratio at low input current, low coupling capacitance, and high isolation voltage.

The coupling device is designed for signal transmission between two electrically separated circuits, specifically for use in automotive, as well as high reliable industrial applications.

FEATURES

- AEC-Q102 qualified
- Low profile package
- Wide temperature range: -40°C to $+125^{\circ}\text{C}$
- High collector emitter voltage, $V_{CEO} = 80\text{ V}$
- Isolation voltage $V_{ISO} = 5000\text{ V}_{\text{RMS}}$
- Low coupling capacitance
- High common mode transient immunity
- Material categorization:
for definitions of compliance please see
www.vishay.com/doc?99912

RoHS
COMPLIANT
HALOGEN
FREE
GREEN
(I5-2008)

APPLICATIONS

- Galvanic and noise isolation
- Battery management systems
- Grid connected on-board chargers
- DC/DC converter
- Isolated wake-up signal
- System control

AGENCY APPROVALS

- UL 1577 (pending)
- cUL 1577 (pending)
- DIN EN 60747-5-5 (VDE 0884-5) (pending)
- CQC (pending)

ORDERING INFORMATION														
PART NUMBER								CTR BIN	PACKAGE OPTION				TAPE AND REEL	LSOP-4
V	O	L	A	6	1	7	A	-	#	X	0	0	1	T
AGENCY CERTIFIED / PACKAGE														CTR (%)
UL, cUL, CQC, VDE				50 to 600			63 to 125			100 to 200			130 to 260	
LSOP-4				VOLA617A-X001T			VOLA617A-2X001T			VOLA617A-3X001T			VOLA617A-8X001T	

ABSOLUTE MAXIMUM RATINGS ($T_{amb} = 25^{\circ}C$, unless otherwise specified)				
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT
INPUT				
Reverse voltage		V_R	6	V
Power dissipation		P_{diss}	80	mW
Forward current		I_F	50	mA
Forward surge current	$t_p < 10 \mu s$	I_{FSM}	1.5	A
Junction temperature		T_j	145	$^{\circ}C$
OUTPUT				
Collector emitter voltage		V_{CEO}	80	V
Emitter collector voltage		V_{ECO}	7	V
Collector current		I_C	50	mA
	$t_p/T = 0.5, t_p < 10 \text{ ms}$	I_C	100	mA
Power dissipation		P_{diss}	150	mW
Junction temperature		T_j	140	$^{\circ}C$
COUPLER				
Total power dissipation		P_{tot}	200	mW
Storage temperature range		T_{stg}	-40 to +150	$^{\circ}C$
Operating temperature range		T_{amb}	-40 to +125	$^{\circ}C$
Soldering temperature ⁽¹⁾	$\leq 10 \text{ s}$	T_{sld}	260	$^{\circ}C$

Notes

- Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operational sections of this document. Exposure to absolute maximum ratings for extended periods of the time can adversely affect reliability.

⁽¹⁾ Refer to reflow profile for soldering conditions for surface mounted devices.

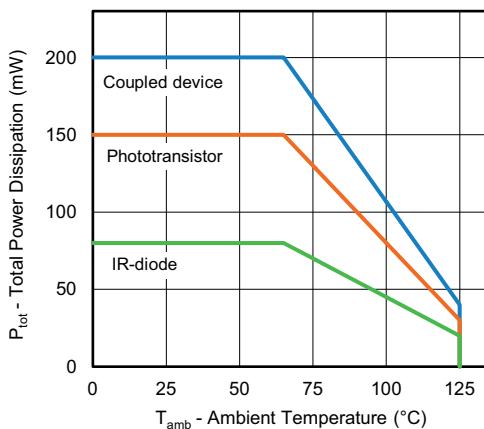


Fig. 1 - Total Power Dissipation vs. Ambient Temperature

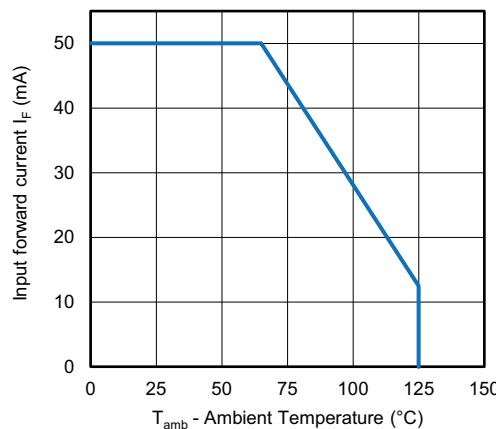


Fig. 2 - Total Power Dissipation vs. Ambient Temperature

RECOMMENDED OPERATING CONDITIONS ($T_{amb} = 25^{\circ}C$, unless otherwise specified)				
PARAMETER	SYMBOL	MIN.	MAX.	UNIT
Forward current	I_F	0.5	20	mA

ELECTRICAL CHARACTERISTICS ($T_{amb} = 25^{\circ}C$, unless otherwise specified)						
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT
INPUT						
Forward voltage	$I_F = 5 \text{ mA}$	V_F	1.2	1.34	1.5	V
Capacitance	$V_R = 0 \text{ V}, f = 1 \text{ MHz}$	C_{CI}	-	30	-	pF
Reverse current	$V_R = 6 \text{ V}$	I_R	-	-	10	μA
Thermal resistance (IR diode)		R_{thJA}	-	1000	-	K/W
OUTPUT						
Collector emitter leakage current	$V_{CE} = 10 \text{ V}, I_F = 0 \text{ A}$	I_{CEO}	-	10	100	nA
	$V_{CE} = 10 \text{ V}, I_F = 0 \text{ A}, T_{amb} = 100^{\circ}\text{C}$	I_{CEO}	-	3	50	μA
Collector emitter breakdown voltage	$I_C = 100 \mu\text{A}$	BV_{CEO}	80	-	-	V
Collector emitter capacitance	$V_{CE} = 5 \text{ V}, f = 1 \text{ MHz}$	C_{CE}	-	4	-	pF
Thermal resistance (phototransistor)		R_{thJA}	-	500	-	K/W
COUPLER						
Collector emitter saturation voltage	$I_F = 5 \text{ mA}, I_C = 1 \text{ mA}$	V_{CEsat}	-	0.25	0.4	V
Cut-off frequency	$I_F = 10 \text{ mA}, V_{CC} = 5 \text{ V}, R_L = 100 \Omega$	f_{CTR}	-	160	-	kHz
Coupling capacitance	$f = 1 \text{ MHz}$	C_{IO}	-	0.5	-	pF
Thermal resistance (coupled device)		R_{thJA}	-	375	-	K/W

Note

- Minimum and maximum values are testing requirements. Typical values are characteristics of the device and are the result of engineering evaluation. Typical values are for information only and are not part of the testing requirements.

CURRENT TRANSFER RATIO ($T_{amb} = 25^{\circ}C$, unless otherwise specified)							
PARAMETER	TEST CONDITION	PART	SYMBOL	MIN.	TYP.	MAX.	UNIT
I_C/I_F	$I_F = 5 \text{ mA}, V_{CE} = 5 \text{ V}$	VOLA617A	CTR	50	-	600	%
		VOLA617A-2	CTR	63	-	125	%
		VOLA617A-3	CTR	100	-	200	%
		VOLA617A-8	CTR	130	-	260	%

SWITCHING CHARACTERISTICS ($T_{amb} = 25^{\circ}C$, unless otherwise specified)						
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT
NON-SATURATED						
Rise time	$I_C = 2 \text{ mA}, V_{CC} = 5 \text{ V}, R_L = 100 \Omega$	t_r	-	3.6	-	μs
Fall time		t_f	-	5.7	-	μs
Turn-on time		t_{on}	-	5.3	-	μs
Turn-off time		t_{off}	-	6.9	-	μs
SATURATED						
Rise time	$I_F = 5 \text{ mA}, V_{CC} = 5 \text{ V}, R_L = 1.9 \text{ k}\Omega$	t_r	-	3.7	-	μs
Fall time		t_f	-	9.8	-	μs
Turn-on time		t_{on}	-	4.5	-	μs
Turn-off time		t_{off}	-	14.6	-	μs

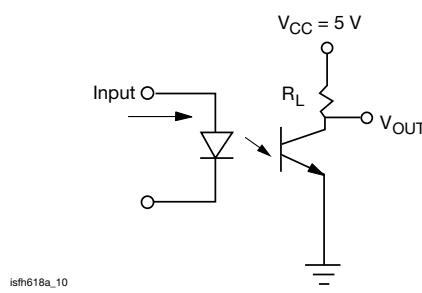


Fig. 3 - Test Circuit

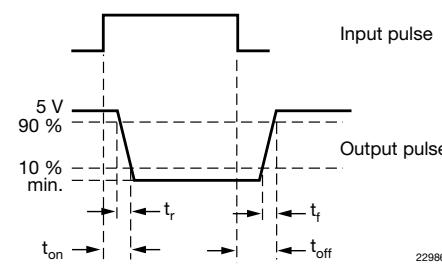


Fig. 4 - Test Circuit and Waveforms

SAFETY AND INSULATION RATINGS				
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT
Climatic classification	According to IEC 68 part 1		40 / 125 / 21	
Pollution degree	According to DIN VDE 0109		2	
Comparative tracking index	Insulation group IIIa	CTI	275	
Maximum rated withstanding isolation voltage	According to UL1577, $t = 1$ min	V_{ISO}	5000	V_{RMS}
Maximum transient isolation voltage	According to DIN EN 60747-5-5	V_{IOTM}	8000	V_{peak}
Maximum repetitive peak isolation voltage	According to DIN EN 60747-5-5	V_{IORM}	1414	V_{peak}
Maximum working isolation voltage	According to DIN EN 60747-5-5	V_{IOWM}	1000	V_{RMS}
Isolation resistance	$T_{amb} = 125$ °C, $V_{IO} = 500$ V	R_{IO}	$\geq 10^{11}$	Ω
	$T_{amb} = T_S, V_{IO} = 500$ V	R_{IO}	$\geq 10^9$	Ω
Output safety power		P_{SO}	400	mW
Input safety current		I_{SI}	180	mA
Input safety temperature		T_S	175	°C
Creepage distance			≥ 8	mm
Clearance distance			≥ 8	mm
Insulation thickness		DTI	≥ 0.4	mm
Input to output test voltage, method B	$V_{IORM} \times 1.875 = V_{PR}$, 100 % production test with $t_M = 1$ s, partial discharge < 5 pC	V_{PR}	2651	V_{peak}
Input to output test voltage, method A	$V_{IORM} \times 1.6 = V_{PR}$, sample test with $t_M = 10$ s, partial discharge < 5 pC	V_{PR}	2262	V_{peak}

Note

- As per IEC 60747-5-5, this optocoupler is suitable for "safe electrical insulation" only within the safety ratings. Compliance with the safety ratings shall be ensured by means of protective circuits.

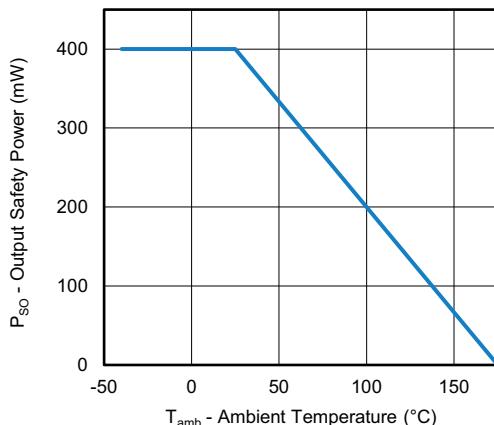


Fig. 5 - Derating Diagram

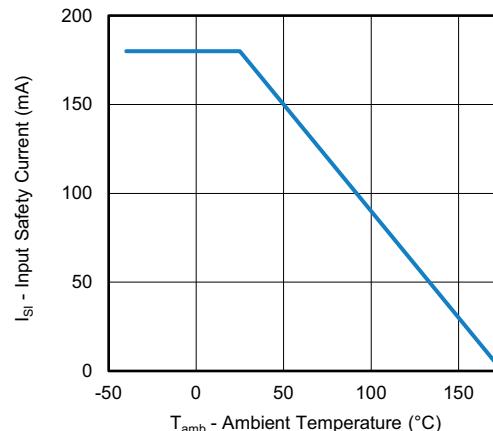


Fig. 6 - Safety Input Current vs. Temperature

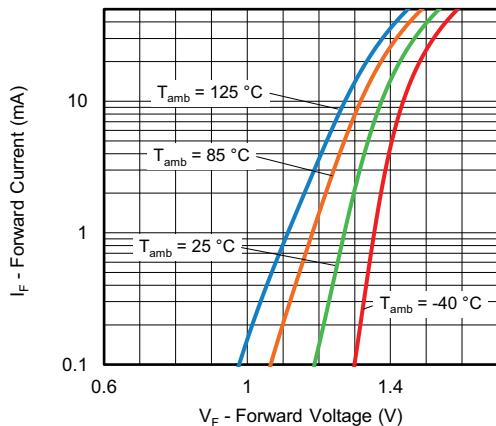

TYPICAL CHARACTERISTICS ($T_{amb} = 25^\circ\text{C}$, unless otherwise specified)

Fig. 7 - Forward Current vs. Forward Voltage

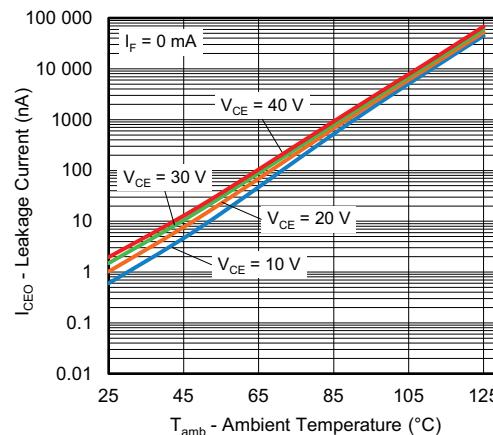


Fig. 10 - Leakage Current vs. Ambient Temperature

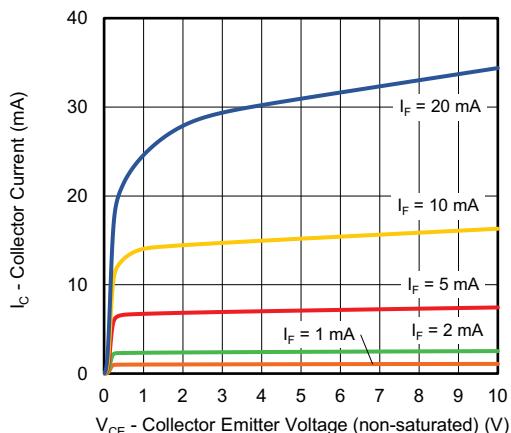


Fig. 8 - Collector Current vs. Collector Emitter Voltage (non-saturated)

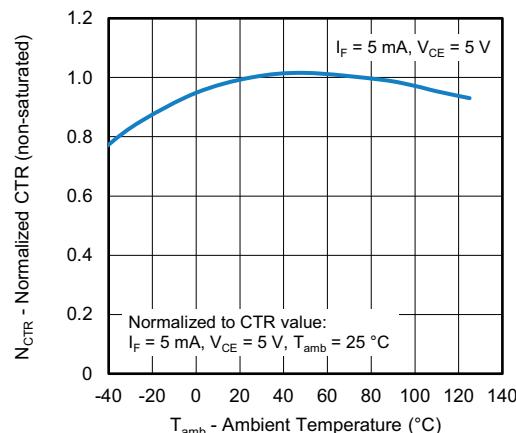


Fig. 11 - Normalized CTR (non-saturated) vs. Ambient Temperature

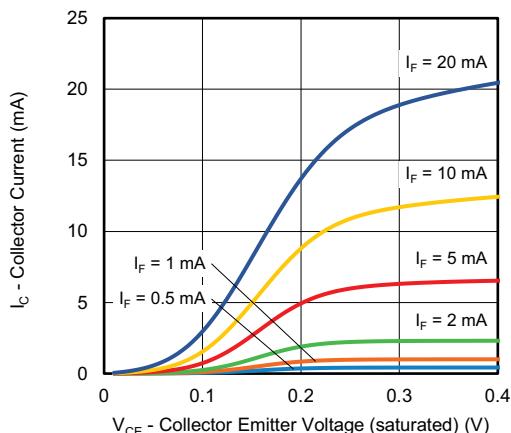


Fig. 9 - Collector Current vs. Collector Emitter Voltage (saturated)

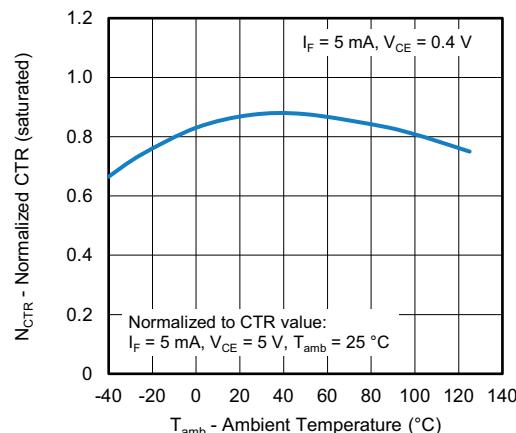


Fig. 12 - Normalized CTR (saturated) vs. Ambient Temperature

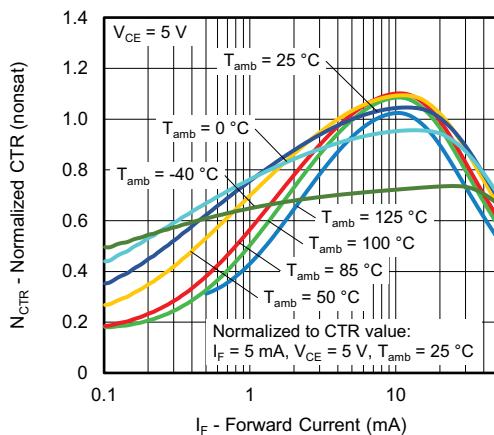


Fig. 13 - Normalized CTR (non-saturated) vs. Forward Current

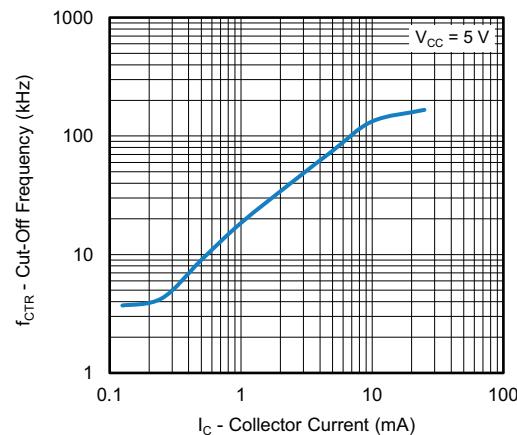


Fig. 16 - Cut-Off Frequency vs. Collector Current

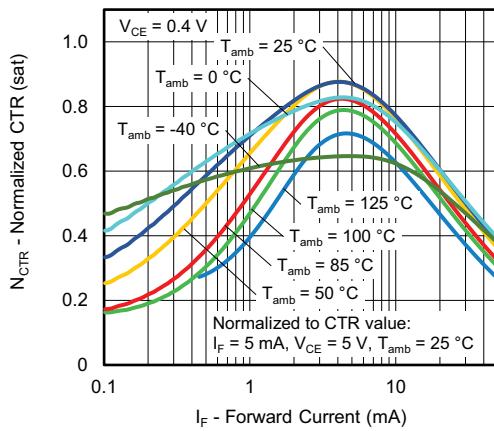


Fig. 14 - Normalized CTR (saturated) vs. Forward Current

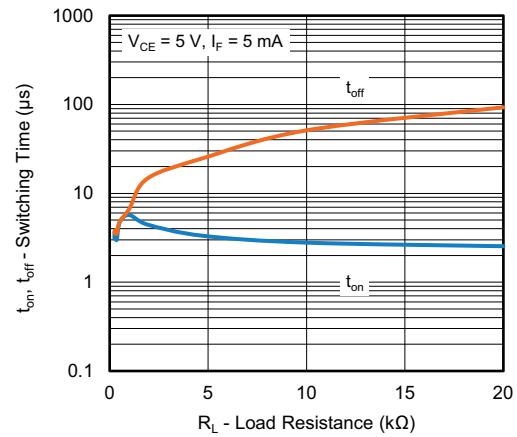


Fig. 17 - Switching Time vs. Load Resistance

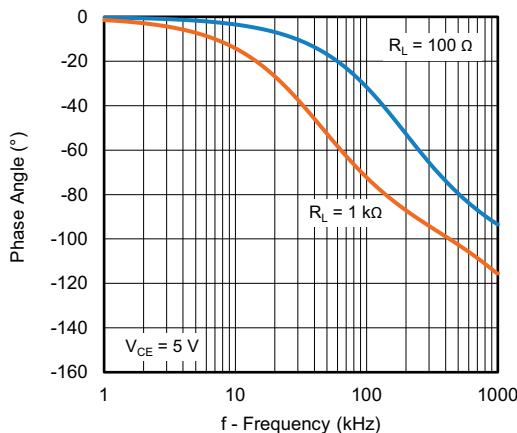


Fig. 15 - Phase Angle vs. Frequency

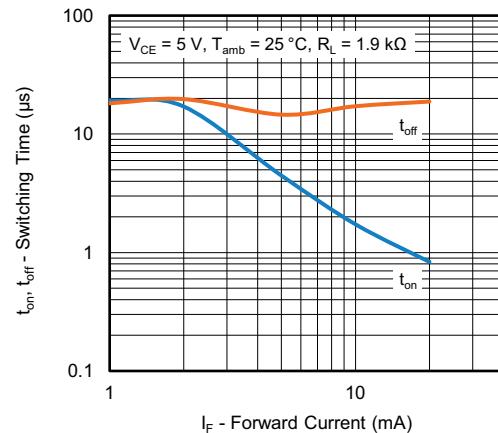
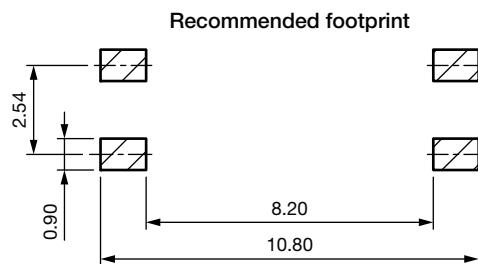
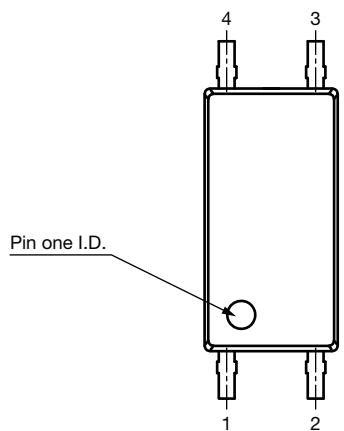
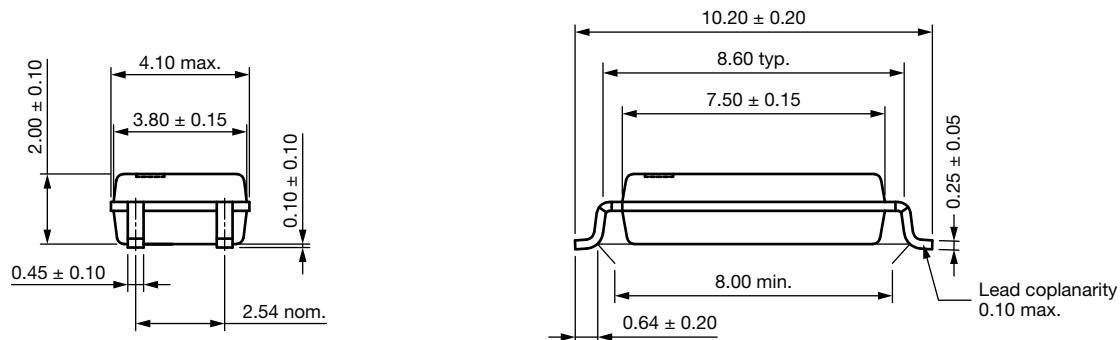





Fig. 18 - Switching Time vs. Forward Current

PACKAGE DIMENSIONS (in millimeters)

PACKAGE MARKING (example of VOLA617A-3X001T)

Notes

- XXXX lot marking code
- Tape and reel suffix (T) is not part of the package marking

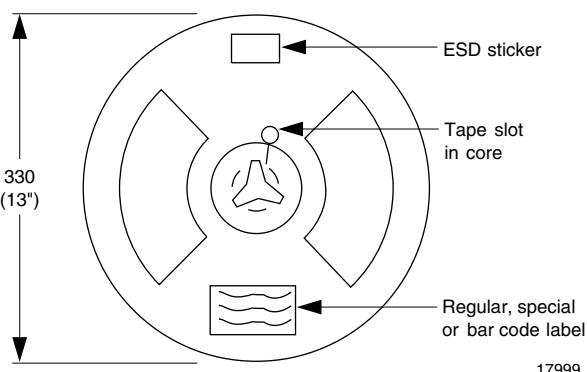

TAPE AND REEL DIMENSIONS (in millimeters)

Fig. 19 - Reel Dimensions (3000 units per reel)

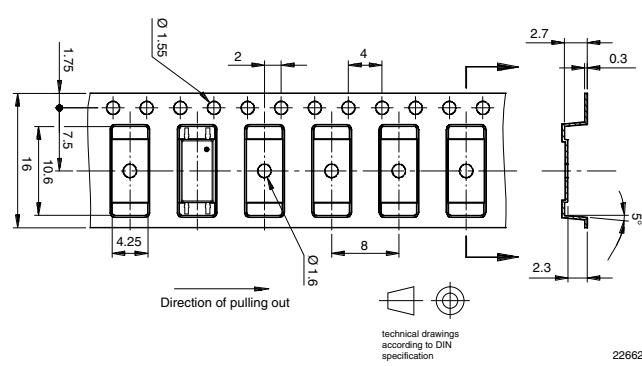
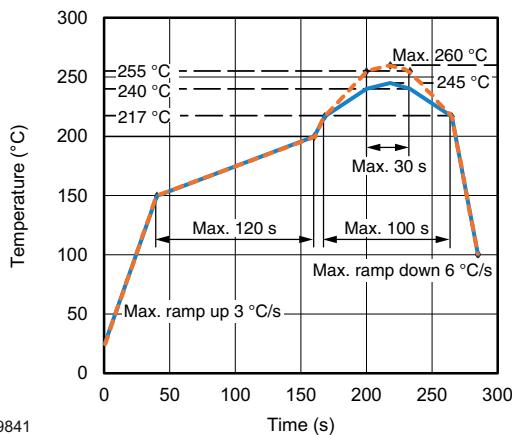



Fig. 20 - Tape Dimensions

SOLDER PROFILE

19841

Fig. 21 - Lead (Pb)-free Reflow Solder Profile
According to J-STD-020

HANDLING AND STORAGE CONDITIONS

ESD level: HBM class 2

Floor life: unlimited

Conditions: $T_{amb} < 30 \text{ }^{\circ}\text{C}$, RH < 60 %

Moisture sensitivity level 1, according to J-STD-020.

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Vishay products are not designed for use in life-saving or life-sustaining applications or any application in which the failure of the Vishay product could result in personal injury or death unless specifically qualified in writing by Vishay. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.