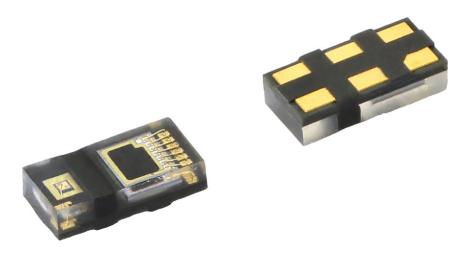


VISHAY SEMICONDUCTORS


www.vishay.com

Optical Sensors

Application Note

Designing the VCNL36828P Into an Application

By Hakimi Wan Yusof

ABSTRACT

This application note provides an introduction to the functionality of the VCNL36828P sensor, application circuits, and mechanical design considerations.

CONTACT

sensorstechsupport@vishay.com

Please visit our website at <u>www.vishay.com/optoelectronics/</u> for more information.

Document Number: 80359 🔳

The DNA of tech.

Designing the VCNL36828P Into an Application

CONTENTS

1. Introduction	3
2. Pin Description and Block Diagram	4
2.1. Pin Description	4
2.2. Block Diagram	5
3. Application Circuit	6
3.1. Slave Address Selection	6
3.2. Application Circuit With a Single Device	6
3.3. Application Circuit With a Smart Dual Slave Address	9
4. Register Description	10
4.1. Basic Initialization	
4.2. Emitter Settings (VCSEL)	
4.3. Detector Settings	
4.4. Measurement Period / Rate	
4.5. Offset Count Cancellation	
4.6. Sunlight Cancellation	20
4.7. Interrupt	21
4.8. Readout Registers	25
5. I ² C and Timing	26
5.1. I ² C Write and Read Protocol	
5.2. Timing	27
5.2.1. Proximity Measurement Timing	27
5.2.2. Timing Specification	
6. Proximity Measurement	31
6.1. Software Flow Chart	
6.2. Proximity Value vs. Distance Curve	
6.2.1. Proximity Value vs. Distance Curve Without a Window Cover	
6.3. Temperature Behaviour	
7. Average Current Consumption	35 🏲
8. Mechanical and Optical Design	38 📮
	CATION
	-
	0
	Z

N N T

The DNA of tech.

Designing the VCNL36828P Into an Application

1. INTRODUCTION

The VCNL36828P is a fully integrated proximity sensor. It combines a vertical-cavity surface-emitting laser (VCSEL), photodiode, and application-specific integrated circuit (ASIC) within a single package. The VCNL36828P has been developed for proximity detection applications that require a dual slave address, low power consumption, small package size, small window size, and short range operation up to 20 cm. In addition, given the rated supply voltage of 1.8 V to reduce power consumption, the sensor is intended for battery-powered applications such as:

- Presence detection in smartphones and true wireless stereo (TWS) earbuds
- Presence detection in VR / AR headsets and smart glasses
- Presence detection in smartwatches
- Touchless button / dispensing

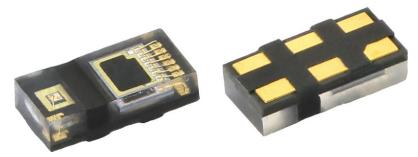
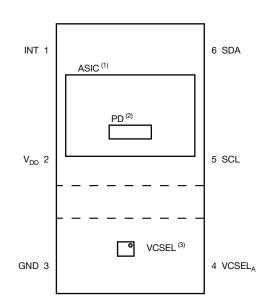


Fig. 1 - VCNL36828P

KEY BENEFITS OF U	KEY BENEFITS OF USING VCNL36828P					
BENEFITS	DESCRIPTION					
Small package for	Very small 2.0 x 1.0 x 0.5 (L x W x H in mm) package					
a tight space requirement	A small package allows a design with a small window size					
	1.8 V rated power supply and I ² C bus reduce the power consumption					
Low power consumption for battery-powered devices	The low idle current of 5 μ A allows a lower average current consumption					
for ballory powered deviced	The use of VCSEL instead of IRED allows a lower driving current with comparable performance					
Superior provinity detection	The proximity sensor can detect up to 20 cm distance					
Superior proximity detection	The proximity sensor supports sunlight cancellation up to 140 klx of sunlight					
Smart dual slave address	Smart dual slave address allows the connection of up to two proximity sensors with a microcontroller without needing an I ² C multiplexer; the slave address can be changed by swapping the SCL and SDA pins					

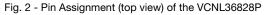
This application note describes the functionality, application circuits, register settings, and mechanical design considerations for the sensor.

Document Number: 80359 🔳



The DNA of tech.

Designing the VCNL36828P Into an Application


PIN DESCRIPTION AND BLOCK DIAGRAM 2.

2.1 Pin Description

Notes

- ASIC Application-specific integrated circuit
 PD Photodiode
- (3) VCSEL Vertical-cavity surface-emitting laser

TABLE 1 - PIN DESCRIPTION								
PIN NUMBER	PIN NAME	TYPE	DESCRIPTION					
1	INT	O (open drain)	Interrupt					
2	V _{DD}	I	Supply voltage					
3	GND	I	Ground					
4	VCSELA	I	VCSEL anode					
5	SCL ⁽¹⁾	I / O (open drain)	l ² C serial clock					
6	SDA ⁽¹⁾	I / O (open drain)	l ² C serial data					

Note

⁽¹⁾ Pin 5 (SCL) and pin 6 (SDA) can be swapped to change the slave address from 0x60 to 0x51 (7 bit slave address)

The DNA of tech.

Designing the VCNL36828P Into an Application

2.2 Block Diagram

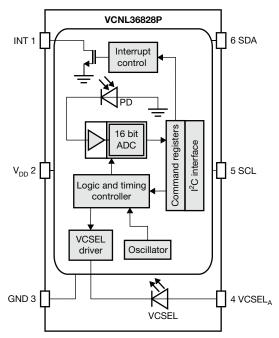


Fig. 3 - Block Diagram of the VCNL36828P

COMPONENT	DESCRIPTION
Command registers	Command registers are the memory storage for writing and reading I ² C commands
I ² C interface	The I ² C interface is a communication interface with active low open drain circuitry
Interrupt control	Interrupt control is a circuit block with active low open drain output
PD	PD is a photodiode that converts the reflected infrared signal from the object into photocurrent; it is then fed to the 16 bit ADC
16 bit ADC	The 16 bit analog to digital converter converts the analog signal to the digital signal ⁽¹⁾ ; the input signal is then amplified
Logic and timing controller	The logic and timing controller controls the timing for the proximity measurement
VCSEL driver	The VCSEL driver is a circuitry block that limits the driving current based on the selected setting
Oscillator	The oscillator generates the clock signal to synchronize all of the device functionalities

Note

⁽¹⁾ The actual bit resolution can vary between 12 and 16 bit depending on the register settings PS_IT, PS_GAIN, and PS_HD

Document Number: 80359 🔳

Designing the VCNL36828P Into an Application

3. APPLICATION CIRCUIT

3.1 Slave Address Selection

The VCNL36828P supports a smart dual slave address where the designer can change the slave address by swapping the SCL and SDA pins, as shown in Table 3.

TABLE 3 - SLAVE ADDRESS TABLE								
PIN 5	PIN 6	7 BIT SLAVE ADDRESS	8 BIT SLAVE ADDRESS (WRITE)	8 BIT SLAVE ADDRESS (READ)				
SCL	SDA	0x60	0xC0	0xC1				
SDA	SCL	0x51	0xA2	0xA3				

A smart dual slave address provides the flexibility for the designer to connect two devices from two different slave addresses on the same I²C bus. The two slave address options allow designers to select a different slave address if one is used by the other slave devices on the same I²C bus in a single device application.

3.2 Application Circuit With a Single Device

Fig. 4 and Fig. 5 show application circuit examples with a single device. As described in Table 3, when pins 5 and 6 are connected to the clock and data signal from the microcontroller, as shown in Fig. 4, they will then be configured as an SCL pin and SDA pin, respectively. The 7 bit slave address option of 0x60 will be automatically selected.

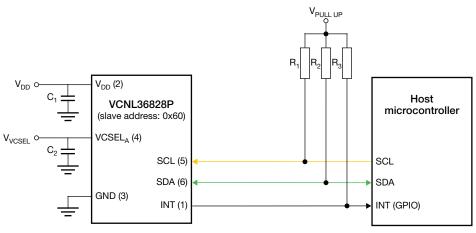


Fig. 4 - Application Circuit Example for a Single VCNL36828P - Slave Address 0x60

On the other hand, when pins 5 and 6 are connected to the data and clock signal from the microcontroller, as shown in Fig. 5, they will then be configured as an SDA pin and SCL pin, respectively. The 7 bit slave address option of 0x51 will be automatically selected.

The DNA of tech.

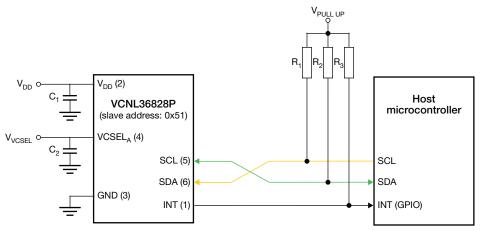


Fig. 5 - Application Circuit Example for a Single VCNL36828P - Slave Address 0x51

Table 4 shows the required values and the explanation for the individual application circuit parameters.

TABLE 4 - A	TABLE 4 - APPLICATION CIRCUIT PARAMETERS							
CIRCUIT PARAMETER	VALUE	DESCRIPTION						
V _{DD}	1.65 V to 2.00 V	A stable power supply is recommended, such as a low dropout or switching regulator; the power supply isolation can be further improved with a decoupling capacitor C_1						
V _{VCSEL}	2.62 V to 3.60 V	A stable power supply such as a low dropout or switching regulator that can supply an adequate amount of power (max. VCSEL pulse driving current of 20 mA) is recommended; the power supply isolation can be further improved with a decoupling capacitor C_2 ; the minimum voltage depends on the selected driving current of the VCSEL; please refer to Table 5 for reference						
V _{PULL UP}	1.2 V to 3.6 V	A stable power supply such as a low dropout or switching regulator is recommended; a voltage level shifter is required if the I ² C bus voltage from the microcontroller is higher than 3.6 V						
C ₁ to C ₄	100 nF to 1 µF	Decoupling capacitors are recommended to reduce the noise in the supply voltage						
R_1 to R_2	2.2 kΩ to 4.7 kΩ	Pull-up resistors within the range of 2.2 k Ω to 4.7 k Ω are recommended; any increase in bus capacitance or resistance will increase the logic-high transition time						
R ₃	4.7 k Ω to 22 k Ω	A pull-up resistor within the range of 4.7 $k\Omega$ to 22 $k\Omega$ is recommended						

VCSEL Driver

Fig. 6 shows the VCSEL driver circuit in the VCNL36828P.

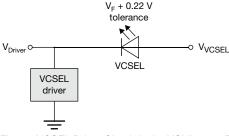


Fig. 6 - VCSEL Driver Circuit in the VCNL36828P

The typical supply voltage for the VCSEL is 3.3 V. The designer could connect pin 4 VCSEL_A with a lower supply voltage V_{VCSEL} . However, V_{VCSEL} should at least match the minimum required supply voltage for the VCSEL $V_{VCSEL,min}$.

www.vishay.com

The DNA of tech.

Designing the VCNL36828P Into an Application

V_{VCSEL,min.} depends on:

- \bullet The selected driving current I_{F} of the VCSEL and its corresponding forward voltage V_{F}
- \bullet The forward voltage tolerance of the VCSEL, $V_{\text{F, tolerance}}$, which is 0.22 V
- \bullet The minimum voltage required by the driver circuit, $V_{\text{Driver,min.}},$ which is 0.6 V

Therefore,

$$V_{VCSEL, min.} = V_F(I_F) + V_{F, \text{ tolerance}} + V_{Driver, min.} = V_F(I_F) + 0.22 V + 0.6 V$$
 (1)

Fig. 7 and Table 5 show the computation of $V_{VCSEL,min.}$. The designer could use 3.3 V (except for 20 mA, which has a $V_{VCSEL,min.}$ of 3.36 V) to provide sufficient voltage headroom. The maximum allowable supply voltage of the VCSEL $V_{VCSEL,max.}$ is 3.6 V.

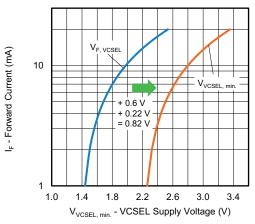


Fig. 7 - Forward Current vs. VCSEL Supply Voltage

TABLE 5 - V _{VCSEL, MIN} .								
I _{VCSEL} (I _F)	7 mA	9 mA	11 mA	12 mA	15 mA	17 mA	19 mA	20 mA
V _F	1.80 V	1.92 V	2.04 V	2.09 V	2.26 V	2.37 V	2.48 V	2.54 V
V _{F, tolerance}				0.2	2 V			
V _{Driver, min.}				0.6	6 V			
V _{VCSEL, min.}	2.62 V	2.74 V	2.86 V	2.91 V	3.08 V	3.19 V	3.3 V	3.36 V
V _{VCSEL, max.}	3.6 V							

Document Number: 80359 🔳

Designing the VCNL36828P Into an Application

3.3 Application Circuit With a Smart Dual Slave Address

Fig. 8 shows an application circuit example with a smart dual slave address. By swapping the SCL and SDA pins of the second device, as shown in Table 3, the designer can change the 7 bit slave address of the VCNL36828P. This provides the flexibility for the designer to connect two devices from two different slave addresses on the same I²C bus.

Fig. 8 - Application Circuit Example for Two VCNL36828Ps - Smart Dual Slave Address

The DNA of tech.

Designing the VCNL36828P Into an Application

4. REGISTER DESCRIPTION

REGISTER GROUP	BIT NAME	REGISTER NAME	COMMAND CODE	DESCRIPTION	ACCESS
GNOUP	PS CAL	NAME	CODE	Enable / disable the internal calibration	
	PS ON	PS_CONF1_L	0x00	Switch the sensor on / off	
	PS OFFSET	PS CONF2 H	0x01	Enable / disable the internal crosstalk cancellation	
Basic initialization	PS_MODE			Set the mode of the sensor to either auto or active force mode	
	PS_TRIG	PS_CONF3_L	0x02	Set the bit to 1 to trigger an individual active force mode measurement	
	PS_ITB		Set the pulse length "T" for PS_IT to eithe		
Emitter settings	PS_IT	PS_CONF2_L	0x01	Set the integration time for one measurement pulse (1 T, 2 T, 4 T, or 8 T)	
(VCSEL)	PS_MPS			Set the number of infrared measurement pulses	
	PS_CURRENT	PS_CONF2_H		Set the VCSEL driving current (7, 9,, 20 mA)	
	PS_HD	PS_CONF1_H	0x00	Set the maximum output data to either 12 bit or 16 bit	
Detector settings	PS_GAIN	PS_CONF2_L	0.01	Set the digital gain in the ADC	Write and
Settings	PS_SENS	PS_CONF2_H	0x01	Set the sensitivity in the ADC	read
Measurement	PS_PERIOD	PS_CONF2_L	0x01	Set the measurement period (50 ms, 100 ms, 200 ms, or 400 ms)	
period / rate	PS_SPERIOD	PS_CONF3_H	0x02	Set the measurement period (6.25 ms, 12.5 ms, or 25 ms)	
Offset count cancellation	-	PS_CANC	0x05	Set the offset count cancellation value	
Sunlight cancellation	PS_SC	PS_CONF3_H	0x02	Enable/disable the sunlight cancellation	
	PS_INT			Set the interrupt mode setting	
	PS_PERS	PS CONF1 H	0x00	Set the interrupt persistence number (1, 2, 3, or 4)	
	PS_SMART_PERS	F3_00NF1_F	0x00	Enable/disable the smart persistence	
	PS_SP_INT			Enable/disable the sunlight protection mode interrupt	
Interrupt	-	PS_THDL	0x03	Set the low threshold interrupt value	
	-	PS_THDH	0x04	Set the high thershold interrupt value	
	PS_AWAY			Low threshold crossing interrupt event flag	
	PS_CLOSE		0xF9	High threshold crossing interrupt event flag	Read only
PS_SPFLAG				Sunlight protection mode interrupt event flag	
	-	PS_DATA	0xF8	Proximity output data	
Readout registers	VCNL36828P_ID_L	VCNL36828P_ID	0FA	Slave address 0x60: ID = 0x28, Slave address 0x51: ID = 0x29	Read only
	VCNL36828P_ID_H			ID = 0x01	

Designing the VCNL36828P Into an Application

4.1 Basic Initialization

The sensor can be initialized with the PS_CAL, PS_ON, PS_MODE, PS_TRIG, and PS_OFFSET bits, which are found in three different registers: PS_CONF1_L, PS_CONF2_H, and PS_CONF3_L.

TABLE 7 - BASIC INITIALIZATION									
REGISTER GROUP	BIT NAME	REGISTER NAME	COMMAND CODE	FUNCTION	BIT	VALUE	DESCRIPTION		
	PS CAL			Enable/disable the internal calibration	7	0x0 (0b0)	Disable (default)		
	I O_OAL				'	0x1 (0b1)	Enable		
PS_ON	PS_ON	PS_CONF1_L	0×00	Switch the sensor on / off	0	0x0 (0b0)	Turn off the sensor (shutdown) (default)		
						0x1 (0b1)	Turn on the sensor		
Basic		S_OFFSET PS_CONF2_H	0x01	Enable / disable the internal crosstalk cancellation	12	0x0 (0b0)	Disable (default)		
initialization	F3_OFTSET				12	0x1 (0b1)	Enable		
				Set the active force mode trigger;		0x0 (0b0)	Off (default)		
	PS_TRIG	PS_CONF3_L	0x02	This bit will be reset to 0 after the measurement cycle	5	0x1 (0b1)	Trigger		
	PS_MODE			Set the measurement mode of the sensor	4	0x0 (0b0)	Auto mode (default)		
						0x1 (0b1)	Active force mode		

PS_ON - The sensor can be turned on by setting this bit to 1 and turned off by setting it to 0. The sensor will mostly be in the idle state and only be in the active state during the measurement phase.

PS_MODE - Set this bit to 0 to activate the auto mode and 1 to activate the active force mode. Auto mode means the measurement will be triggered continuously with a rate defined by the measurement period. This measurement period depends on the PS_PERIOD and PS_SPERIOD bits setting. Active force mode means the measurement will have to be triggered manually by setting the PS_TRIG bit to 1.

PS_TRIG - This bit must be set to 1 when using active force mode to trigger a measurement. Otherwise, the bit must be set to 0.

PS_OFFSET - This bit can be set to 1 during initialization to perform internal crosstalk cancellation. The internal crosstalk is the crosstalk between the infrared signal from the VCSEL and the photodiode in the open air (without a window cover). The signal from the internal crosstalk is measured in the final test and is stored internally. If this bit is enabled, the count from the crosstalk will be deducted. This crosstalk is usually between 5 to 20 counts.

Fig. 9 and Fig. 10 show the basic initialization of the two available modes. The basic initialization steps are usually useful when first testing with the proximity sensor. The proximity measurement will be based on the default values. In practice, more sensor parameters to change the strength of the VCSEL infrared signal, the gain of the analog-digital converter (ADC), the measurement period, and the interrupt should be set before starting the measurement.

www.vishay.com

Vishay Semiconductors

The DNA of tech.

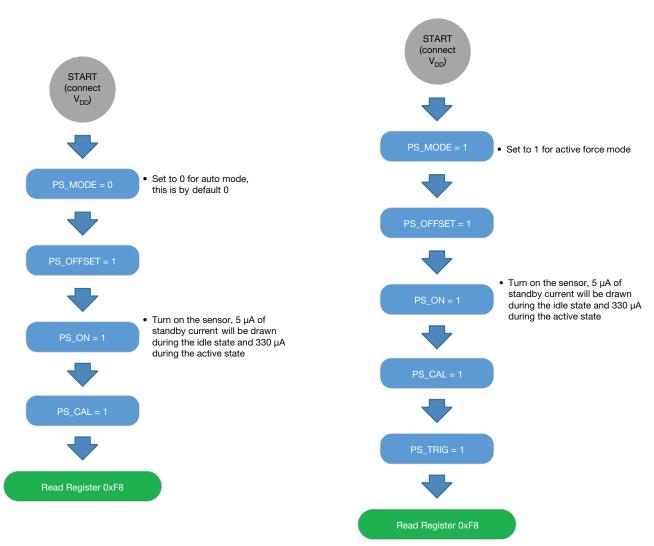


Fig. 9 - Basic initialization Example Steps for Auto Mode

Fig. 10 - Basic initialization Example Steps for Active Force Mode

The DNA of tech.

Designing the VCNL36828P Into an Application

4.2 EMITTER SETTINGS (VCSEL)

TABLE	B - EMITTEF	R SETTINGS	(VCSEL)				
REGISTER GROUP	BIT NAME	REGISTER NAME	COMMAND CODE	FUNCTION	BIT	VALUE	DESCRIPTION
						0x0 (0b00)	1T (default)
	PS_IT			Set the integration time for one measurement; the pulse length "T"	5:4	0x1 (0b01)	2T
	F3_11			is determined by PS_ITB	5.4	0x2 (0b10)	4T
				-		0x3 (0b11)	8T
		PS_CONF2_L				0x0 (0b00)	1 pulse (default)
	PS MPS	F3_CONF2_L		Set the number of infrared signal	3:2	0x1 (0b01)	2 pulses
F3_WF3			pulses per measurement	0.2	0x2 (0b10)	4 pulses	
			0x01			0x3 (0b11)	8 pulses
Emitter settings	PS_ITB			Set the pulse length "T" for PS_IT	1	0x0 (0b0)	T = 25 µs (default)
(VCSEL)	10_110					0x1 (0b1)	T = 50 μs
						0x0 (0b000)	7 mA (default)
						0x1 (0b001)	9 mA
						0x2 (0b010)	11 mA
	PS CURRENT	PS CONF2 H		Set the VCSEL driving current	10 . 0	0x3 (0b011)	12 mA
	F3_CONNENT	F3_00NF2_H		Set the VCSEE driving current	10:8	0x4 (0b100)	15 mA
						0x5 (0b101)	17 mA
						0x6 (0b110)	19 mA
						0x7 (0b111)	20 mA

Fig. 11 depicts the behavior of the VCSEL infrared signal register settings on the infrared signal magnitude of the sensor. When the parameters PS_ITB, PS_IT, PS_CURRENT, and PS_MPS in two different registers PS_CONF2_L and PS_CONF2_H have been increased from lower value settings to higher value settings, the infrared signal magnitude of the VCSEL will increase. This increases the object's detection distance because the reflected infrared signal magnitude and proximity counts increase as well.

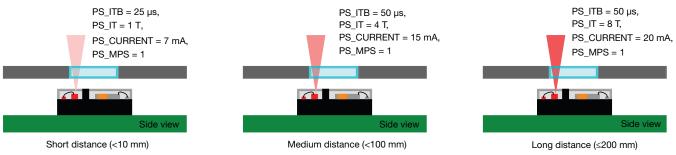


Fig. 11 - The Behavior of the VCSEL Register Settings on the Infrared Signal Magnitude of the Sensor

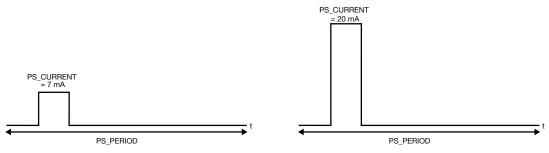
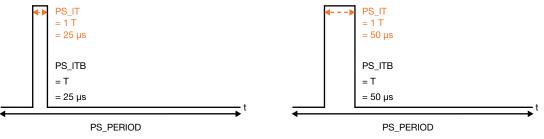
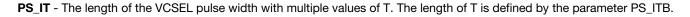
The infrared signal of the VCSEL is a pulse with a pulse width of multiple values of T. This can be set via the parameter PS_IT. The length of T can be either 25 μ s or 50 μ s, which can be set via the parameter PS_ITB. The magnitude of the pulse can be controlled via the VCSEL driver current parameter PS_CURRENT.

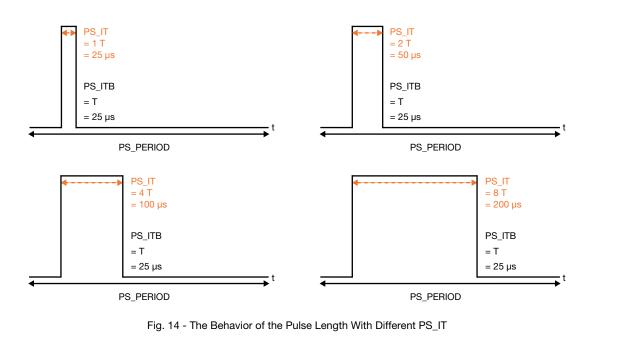
Document Number: 80359
П

The DNA of tech.

Designing the VCNL36828P Into an Application

PS_CURRENT - The magnitude of the driving current of the VCSEL pulse.

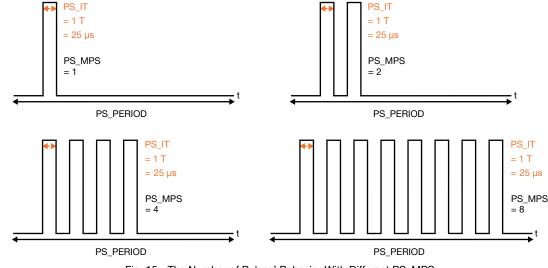





Fig. 12 - The Behavior of the Pulse Magnitude With Different PS_CURRENT

PS_ITB - The length of T in parameter PS_IT. This can be either 25 µs or 50 µs. The setting 25 µs could be used when low power consumption is a requirement.

Р Р

υ

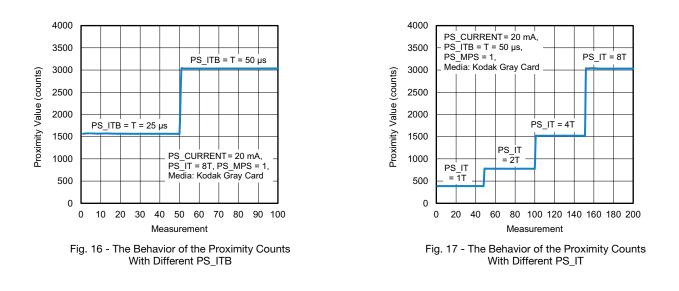

LICATION

z

0

The DNA of tech.

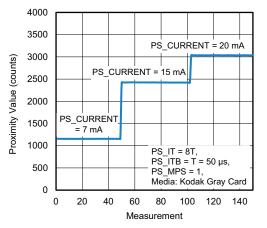
Designing the VCNL36828P Into an Application

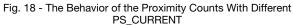


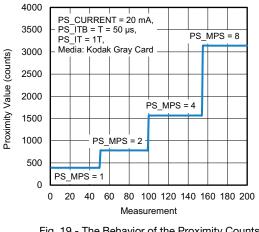
PS_MPS - The number of VCSEL pulses within one measurement period.

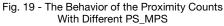
www.vishay.com

Fig. 15 - The Number of Pulses' Behavior With Different PS_MPS


Fig. 16, Fig. 17, Fig. 18, and Fig. 19 show the behavior of the proximity counts with increasing setting values. It can be observed that the proximity counts are approximately doubled when the setting values have been doubled. The designer could increase PS_IT, PS_ITB, PS_CURRENT, and PS_MPS if a longer detection distance is required. It is recommended to start with PS_ITB = 25 μ s and then increase the setting PS_IT, PS_CURRENT, and PS_ITB = 50 μ s. This sequence allows for current consumption optimization. PS_MPS should only be the last setting to be increased when a longer detection distance is required. The maximum proximity value depends on PS_IT, PS_HD, and PS_GAIN. This will be explained further in Table 10 in the section 4.3. Fig. 11 shows example settings for different distances. For example, for applications with detection distances up to 200 mm, it is recommended to use PS_ITB = 50 μ s, PS_IT = 8 T, and PS_CURRENT = 20 mA.




The DNA of tech.



4.3 DETECTOR SETTINGS

TABLE 9 - DETECTOR SETTINGS									
REGISTER GROUP	BIT NAME	REGISTER NAME	COMMAND CODE	FUNCTION	BIT	VALUE	DESCRIPTION		
	PS HD	PS CONF1 H	0x00	Enable/disable high dynamic range (12/16 bit) ADC output setting	14	0x0 (0b0)	Disable (12 bit) (default)		
	F3_HD	PS_CONFT_H				0x1 (0b1)	Enable (16 bit)		
Detector		PS_GAIN PS_CONF2_L	0x01	Set the gain of the ADC	0	0x0 (0b0)	x 1 gain (default)		
settings	FS_GAIN					0x1 (0b1)	x 2 gain		
				Set the sensitivity of the ADC	13 -	0x0 (0b0)	Normal sensitivity (default)		
	PS_SENS	PS_CONF2_H				0x1 (0b1)	High sensitivity		

The detector of the proximity sensor consists of the photodiode and the analog-digital converter (ADC). The detector-related parameters PS_HD, PS_GAIN, and PS_SENS in three different registers PS_CONF1_H, PS_CONF2_L, and PS_CONF2_H double or halve the magnitude of proximity counts given the same reflected infrared signal magnitude from the object arrived at the detector. These parameters will help increase the number of counts when a higher dynamic range is needed. Fig. 20 depicts the behavior of the proximity counts when changing the analog-digital converter parameters.

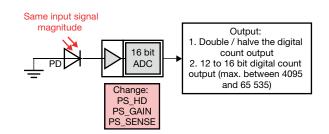


Fig. 20 - The Behavior of the Proximity Counts When Changing the Analog-Digital Converter Parameters

⊳

Document Number: 80359

For technical questions, contact: <u>consumersensors@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

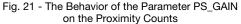
Designing the VCNL36828P Into an Application

PS_HD - This bit sets the maximum resolution of the ADC. For example, when PS_HD is set to 12 bit, the maximum possible counts are always 4095. However, when PS_HD is set to 16 bit, the actual maximum resolution and counts depend on PS_GAIN and PS_IT, as shown in Table 10. This can be between 12 bit and 16 bit or between 4095 counts and 65 535 counts.

PS_GAIN - This bit sets the gain and changes the maximum resolution in the ADC when PS_HD is set to 16 bit. The counts can be doubled when the bit is set to 1. When combined with PS_SENS, the count can be quadrupled when both bits are set to 1. The actual maximum resolution depends on PS_HD and PS_IT, as shown in Table 10.

PS_SENS - This bit sets the sensitivity in the ADC. The counts can be doubled when the bit is set to 1. When combined with PS_GAIN, the count can be quadrupled when both bits are set to 1. The actual maximum resolution depends on PS_HD, PS_GAIN, and PS_IT, as shown in Table 10.

TABLE 10 - MAXIMUM BIT RESOLUTION AND DIGITAL OUTPUT COUNTS								
BIT	NAME	PS_IT = 1T	PS_IT = 8T					
	PS_GAIN = 0 (x1 gain)	12 bit / 4095 counts						
PS_HD = 0 (12 bit)	PS_GAIN = 1 (x2 gain)							
	PS_GAIN = 0 (x1 gain)	12 bit / 4095 counts	13 bit / 8191 counts	14 bit / 16 383 counts	15 bit / 32 767 counts			
PS_HD = 1 (16 bit)	PS_GAIN = 1 (x2 gain)	13 bit / 8191 counts	14 bit / 16 383 counts	15 bit / 32 767 counts	16 bit / 65 535 counts			


In many applications where the detection range is less than 5 cm, such as presence detection in TWS, AR / VR headsets, and touchless switches, 12 bit resolution with maximum counts of 4095 is usually enough to detect two distinct events of "close" and "away".

However, higher dynamic range output counts are required when detecting a longer range and more distinctive events or threshold requirements are needed. Therefore, the designer can set PS_HD to 16 bit and select the appropriate PS_GAIN and PS_IT based on Table 10 to reach a higher maximum count up to 65535.

Fig. 21 and Fig. 22 show the behavior of the parameters PS_GAIN and PS_SENS on the proximity counts. The proximity counts will double with an increase in the gain or sensitivity of the ADC. The combination of double gain and high sensitivity allows the proximity counts to be quadrupled.

Proximity Value (counts)

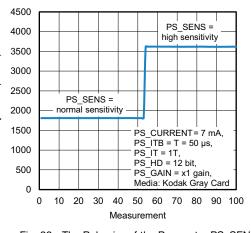


Fig. 22 - The Behavior of the Parameter PS_SENS on the Proximity Counts

The DNA of tech.

Designing the VCNL36828P Into an Application

4.4 Measurement Period / Rate

TABLE 11	- MEASUF	REMENT PE	RIOD / RA	TE			
REGISTER GROUP	BIT NAME	REGISTER NAME	COMMAND CODE	FUNCTION	BIT	VALUE	DESCRIPTION
			0x01	Set the measurement period		0x0 (0b00)	50 ms, which translates into 20 measurements/s (default)
	PS PERIOD	PS CONF2 L			7:6	0x1 (0b01)	100 ms, which translates into 10 measurements/s
	F3_FENIOD	F3_00NF2_L			7.0	0x2 (0b10)	200 ms, which translates into 5 measurements/s
Measurement						0x3 (0b11)	400 ms, which translates into 2.5 measurements/s
Period/Rate		PS_CONF3_H		Set the short measurement period		0x0 (0b00)	Disable the short period (follow PS_PERIOD setting) (default)
	PS SPERIOD		0x02		15 : 14	0x1 (0b01)	6.25 ms, which translates into 160 measurements/s
	PS_SPERIOD		0x02		15.14	0x2 (0b10)	12.5 ms, which translates into 80 measurements/s
						0x3 (0b11)	25 ms, which translates into 40 measurements/s

PS_PERIOD and PS_SPERIOD define the period at which the infrared signal pulses are executed to perform proximity measurements. In most applications, the measurement period between 50 ms and 400 ms is enough to find a compromise between acceptable performance and low power consumption. A higher measurement rate increases the amount of data and decreases the possibility of false detection. However, the sensor will consume more current. The designer could select shorter measurement period options in PS_SPERIOD if a high measurement rate is required. Fig. 23 and Fig. 24 show examples of the measurement period that can be seen from the VCSEL_A pin with a 15 Ω resistor.

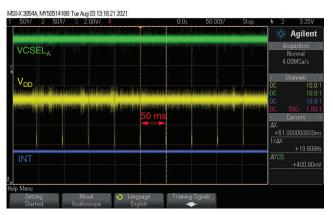


Fig. 23 - Oscilloscope Screenshot of the VCSEL_A Pin for the Measurement Period of 50 ms

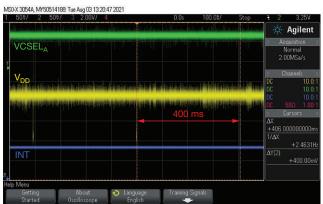


Fig. 24 - Oscilloscope Screenshot of the VCSEL_A Pin for the Measurement Period of 400 ms

The DNA of tech.

Designing the VCNL36828P Into an Application

Fig. 25 and Fig. 26 show examples of the short measurement period that can be seen from the VCSEL_A pin with a 15 Ω resistor.

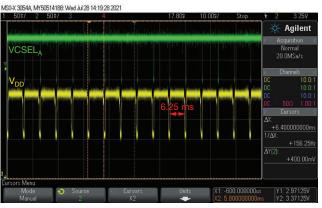


Fig. 25 - Oscilloscope Screenshot of the VCSEL_A for the Short Measurement Period of 6.25 ms

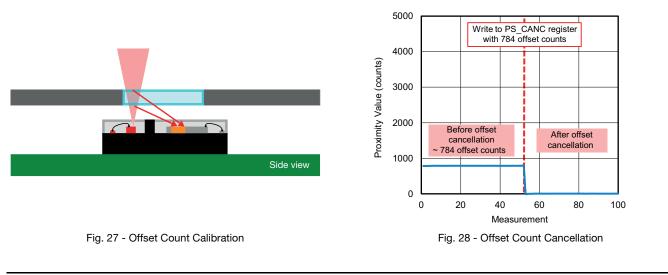


Fig. 26 - Oscilloscope Screenshot of the VCSEL_A for the Short Measurement Period of 25 ms

4.5	Offset	Count	Cancellation

TABLE 12	TABLE 12 - OFFSET COUNT CANCELLATION									
REGISTER GROUP	BIT NAME	REGISTER NAME	COMMAND CODE	FUNCTION	BIT	VALUE	DESCRIPTION			
Offset count	PS_CANC_L	PS CANC	PS CANC 0x05 Set the offse		7:0	0 to 4095	Low byte			
cancellation	PS_CANC_H	PS_CANC	0x05	cancellation value	11:8	0104095	High byte			

Crosstalk between the infrared signal from the VCSEL and the photodiode happens when introducing the window cover. This is because part of the light will be reflected back to the sensor due to fresnel reflection. Therefore, it is recommended to perform offset count cancellation by writing the PS_CANC register with the offset counts. Fig. 27 shows the offset count calibration by measuring the offset counts due to window cover, internal crosstalk, and noise. These offset counts can then be written to the register PS_CANC, as shown in Fig. 28. By using this approach, the change in counts is directly influenced by the object and the effect of the part-to-part tolerance can be reduced.

Revision: 06-Mar-2025

19

Document Number: 80359 🔳

≻

PPLICATION

Z O

-

Designing the VCNL36828P Into an Application

4.6 Sunlight Cancellation

TABLE 13	TABLE 13 - SUNLIGHT CANCELLATION									
REGISTER GROUP	BIT NAME	REGISTER NAME	COMMAND CODE	FUNCTION	BIT	VALUE	DESCRIPTION			
Sunlight	PS SC	PS CONF3 H	0x02	Enable / disable the	12 : 10	0x0 (0b000)	Disable (default)			
cancellation	F3_30	F3_00INF3_F	0.02	sunlight cancellation	12.10	0x7 (0b111)	Enable			

DC ambient light sources in the wavelength region between 800 nm and 1200 nm, such as sunlight and halogen, cause disturbances in the photodiode and the ADC circuitry. Therefore, the sensor needs to perform cancellation to reduce the noise from these disturbances. The sunlight cancellation PS_SC bit can be enabled to allow the sensor to measure the photocurrent contribution from the DC ambient light sources before driving the infrared signal pulse during the proximity measurement. After the proximity measurement, the sensor deducts the DC noise photocurrent from the total photocurrent. As a result, only the photocurrent due to the reflected signal from the object is converted by the ADC circuitry. This sunlight cancellation mechanism is depicted in Fig. 29.

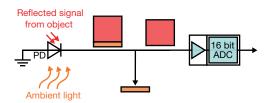


Fig. 29 - Sunlight Cancellation by Using the Active Sunlight Cancellation Current in the VCNL36828P

The sensor can perform the cancellation of sunlight up to 140 klux. The sensor then goes into the sunlight protection mode beyond 140 klux of sunlight. Sunlight protection mode is a mode where the photodiode is in saturation due to high sunlight illuminance. Therefore, the sensor can no longer detect the object and will only output 0 in the PS_DATA register. This can be observed in Fig. 30. If the sunlight protection mode interrupt PS_SP_INT is enabled, the sensor will pull the interrupt line low each time the sensor goes into sunlight protection mode. As a result, the sunlight protection mode interrupt flag PS_SPFLAG changes from 0 to 1. This interrupt flag can be cleared by reading the INT_FLAG register. Therefore, the application should ignore the PS_DATA when it remains 0 and PS_SPFLAG consistently changes to 1 after clearing the INT_FLAG register.

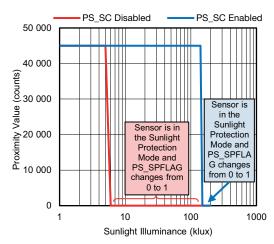


Fig. 30 - The Overall Behavior of the Sunlight Cancellation in the Proximity Sensor With Increasing Sunlight Illuminance

If the PS_SC bit is disabled, the sensor goes into the sunlight protection mode when the illuminance of the sunlight is beyond 🔘

Revision: 06-Mar-2025	20	Document Number: 80359
	For technical questions, contact: consumersensors@vishay.com	
	UBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HE	
ARE	SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishav.com/c	<u>10c?91000</u>

The DNA of tech.

Designing the VCNL36828P Into an Application

5 klux. This can be observed in Fig. 30.

4.7 Interrupt

TABLE '	14 - INTERF	RUPT						
REGISTER GROUP	BIT NAME	REGISTER NAME	COMMAND CODE	FUNCTION	BIT	VALUE	DESCRIPTION	
	PS_SP_INT			Enable / disable the sunlight	13	0x0 (0b0)	Disable (default)	
	F3_3F_INT			protection mode interrupt setting		0x1 (0b1)	Enable	
	PS_SMART_P			Enable / disable the smart		0x0 (0b0)	Disable (default)	
	ERS			persistence setting when the interrupt event is triggered	12	0x1 (0b1)	Enable	
						0x0 (0b00)	1 time (default)	
	PS PERS	PS CONF1 H	0x00	Set the amount of consecutive threshold crossing events	11:	0x1 (0b01)	2 times	
	10_1 110		0,00	necessary to trigger interrupt	10	0x2 (0b10)	3 times	
						0x3 (0b11)	4 times	
						0x0 (0b00)	Interrupt disable (default)	
	PS_INT			Set the interrupt mode setting	9:8	0x1 (0b01)	Logic high / low mode	
						0x3 (0b11)	Trigger by each high / low threshold event	
	PS_THDL_L	PS THDL	0x03	Set the low threshold interrupt	7:0	0 to 65 535	Low byte	
	PS_THDL_H	PS_INDL	0x03	value	15 : 8	0 10 65 535	High byte	
Interrupt	PS_THDH_L	PS THDH	0x04	Set the high threshold interrupt	7:0	0 to 65 535	Low byte	
	PS_THDH_H	F3_IIIDH	0,04	value	15 : 8	0 10 03 333	High byte	
				Read the sunlight protection	12	0x0 (0b0)	No sunlight protection mode interrupt event flag	
	PS_SPFLAG			mode interrupt event flag	12	0x1 (0b1)	Sunlight protection mode interrupt event flag	
	PS_CLOSE	INT_FLAG	0xF9	Read the high threshold crossing interrupt event flag	9	0x0 (0b0)	No high threshold crossing interrupt event flag	
				interrupt event hag		0x1 (0b1)	High threshold crossing interrupt event flag	
	PS_AWAY			Read the low threshold crossing interrupt event flag	8	0x0 (0b0)	No low threshold crossing interrupt event flag	
				interrupt overtrindg		0x1 (0b1)	Low threshold crossing interrupt event flag	

The interrupt pin allows the proximity sensor to autonomously send an interrupt signal to the microcontroller when the sensor's \sim measured proximity crosses the defined high and low thresholds. There are two modes of interrupt in the VCNL36828P:

- Logic mode
- Enable mode

Besides that, the proximity sensor also provides persistence and smart persistence features, which prevent the occurrence of false detection. The interrupt will only be triggered after a defined consecutive threshold crossing event.

Designing the VCNL36828P Into an Application

Persistence and Smart Persistence Mode

PS_PERS determines the event number after crossing the threshold that triggers the interrupt. When PS_PERS is set between 2 and 4, three consecutive measurements after the first threshold crossing event will be performed with the measurement period defined by PS PERIOD. This is to check whether the interrupt crossing events persist to prevent the occurrence of false detection. The interrupt will only be triggered after a consecutive threshold crossing event number as defined by the selected PS_PERS has occurred. This is valid for all of the interrupt modes. Fig. 31 shows the oscilloscope screenshot of pin 2 - V_{DD} and pin 1 - INT for the measurement period of 50 ms, disabled smart persistence, and persistence of 2. The interrupt is pulled low after the second measurement that crosses the threshold out of the four measurements after the first interrupt crossing event. Fig. 32 shows the oscilloscope screenshot for the measurement period of 50 ms, disabled smart persistence, and persistence of 4. The interrupt is pulled low after the fourth measurement that crosses the threshold out of the four measurements after the first interrupt crossing event.

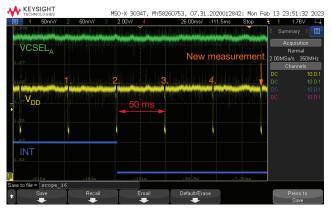


Fig. 31 - Oscilloscope Screenshot of the Pin 2 - VDD and Pin 1 - INT for the Measurement Period of 50 ms. Disabled Smart Persistence, and Persistence of 2

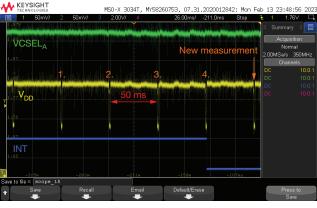


Fig. 32 - Oscilloscope Screenshot of the Pin 2 - VDD and Pin 1 - INT for the Measurement Period of 50 ms. Disabled Smart Persistence, and Persistence of 4

υ

PLICATIO

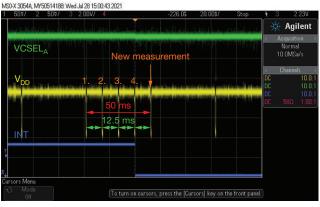
Otherwise, when PS_PERS is set to 1, the persistence events will not be counted and a new measurement will be performed after the defined PS_PERIOD. The interrupt will be triggered immediately after the first threshold event, regardless of whether PS_SMART_PERS is enabled or disabled, as shown in Fig. 33.

Fig. 33 - Oscilloscope Screenshot of the Pin 2 - VDD and Pin 1 - INT for the Measurement Period of 50 ms, Disabled Smart Persistence, and Persistence of 1

Ζ When PS_SMART_PERS is enabled and PS_PERS is set between 2 and 4, four consecutive measurements will be performed with the time difference between pulses changing dynamically with PS_PERIOD/4 or PS_SPERIOD/4, as shown in Fig. 34, Ζ Fig. 35, and Fig. 36. 0

Revision: 06-Mar-2025 Document Number: 80359 🔳 22 For technical questions, contact: consumersensors@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT

ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishav.com/doc?91000



The DNA of tech.

Designing the VCNL36828P Into an Application

Fig. 34 - Oscilloscope Screenshot of the Pin 2 - V_{DD} and Pin 1 - INT for the Measurement Period of 50 ms, Enabled Smart Persistence, and Persistence of 2

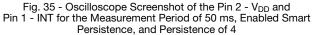


Fig. 36 - Oscilloscope Screenshot of the Pin 2 - V_{DD} and Pin 1 - INT for the Measurement Period of 12.5 ms, Enabled Smart Persistence, and Persistence of 4

Logic Mode

- The interrupt line is pulled low when the proximity counts cross the high threshold, as indicated by the blue line in Fig. 37
- The interrupt line is pulled high when the proximity counts cross the low threshold, as indicated by the purple line in Fig. 37
- PS_PERS determines the event number after crossing the threshold that triggers the interrupt, as shown in Fig. 37
- Consecutive high threshold events cannot be triggered until the proximity count crosses the low threshold first and vice versa, as shown by the green circles in Fig. 37
- Logic mode allows the proximity sensor to autonomously send an interrupt signal to the microcontroller directly without the need to read the INT_FLAG register

Р Р

PLICATIO

www.vishay.com

Vishay Semiconductors

The DNA of tech.

Designing the VCNL36828P Into an Application

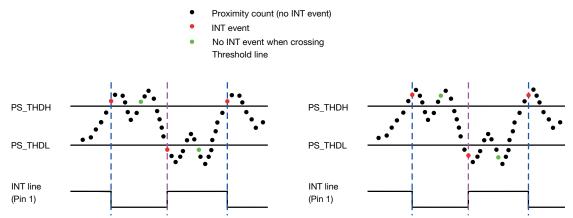
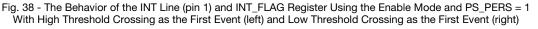



Fig. 37 - The Behavior of the INT Line (pin 1) Using Logic Mode With PS_PERS = 1 (left) and PS_PERS = 2 (right)

Enable Mode

- The interrupt line is pulled low when the proximity counts cross the high or low threshold, as indicated by the red circle in Fig. 38
- The first interrupt event can be either a high or low threshold crossing event
- The interrupt flags PS_IF_CLOSE and PS_IF_AWAY change from 0 to 1 when the proximity counts cross the high and low thresholds, respectively
- PS_PERS determines the event number after crossing the threshold that triggers the interrupt
- The interrupt flag PS_IF_CLOSE or PS_IF_AWAY can be cleared by reading the INT_FLAG register

Sunlight Protection Mode

The sensor enters the sunlight protection mode when the photodiode is in saturation due to very high sunlight illuminance. Therefore, the sensor can no longer detect the object and will only output 0 in the PS_DATA register. The application can detect this situation by enabling PS_SP_INT and reading the PS_SPFLAG when the interrupt line has been pulled low and PS_DATA Z suddenly goes into 0 to confirm this situation. This is explained in section 4.6.

Revision: 06-Mar-2025	24	Document Number: 80359 п
	For technical questions, contact: consumersensors@vishay.com	

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishav.com/doc?91000

Designing the VCNL36828P Into an Application

4.8 Readout Registers

TABLE 1	TABLE 15 - READOUT REGISTERS								
REGISTER GROUP	BIT NAME	REGISTER NAME	COMMAND CODE	FUNCTION	BIT	VALUE	DESCRIPTION		
	PS_DATA_L	PS DATA	0xF8	Read the proximity	ty 7:0		Low byte		
	PS_DATA_H	FS_DATA	UXFO	output data	15:8	0 to 65 535	High byte		
Readout registers	VCNL36828P ID L		0xFA	Read the device ID	7:0	0x28 (0b00101000)	Device with a slave of address 0x60		
registers	VCINL30020F_ID_L	VCNL36828P _ID			7.0	0x29 (0b00101001)	Device with a slave address of 0x51		
	VCNL36828P_ID_H				15:8	0x01 (0b0000001)	Should be kept default		

The VCNL36828P has two readout registers, which are PS_DATA and VCNL36828P_ID. PS_DATA is the 16 bit register in which the proximity counts data will be stored after each measurement. The register can be read via the I²C communication from a microcontroller. There are two methods of reading the register PS_DATA:

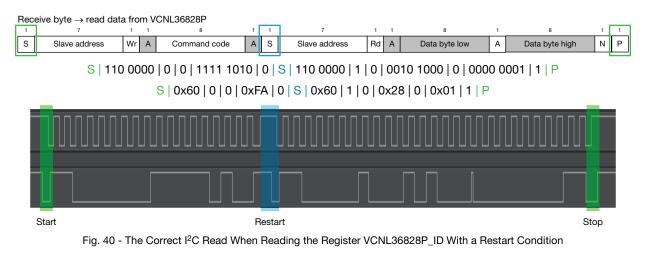
- Data polling continuously reading the register PS_DATA
- Interrupt read the register PS_DATA after the INT line (pin 1) has been triggered

Depending on the applications' requirements, the interrupt method is recommended to reduce power consumption.

On the other hand, VCNL36828P_ID is the register in which the device ID is stored. This allows the sensor to be identified with a specific slave address depending on the connection of pins 5 and 6 of the sensor with the microcontroller. Therefore, the register VCNL36828P_ID can be a good first register to read when first communicating with the sensor to test the I²C communication and to check the slave address.

Designing the VCNL36828P Into an Application

5. I²C AND TIMING


5.1 I²C Write and Read Protocol

The communication with the VCNL36828P can be performed via I²C. The I²C write and read protocol when communicating with the proximity sensor is shown in Fig. 39.

P = stop condition Host action A = acknowledge VCNI 36828P response	Send	byte \rightarrow write com	mand	to ۱	/CNL36828P												
Receive byte \rightarrow read data from VCNL36828P 1 7 1 1 8 1 <td< td=""><td>1</td><td>7</td><td>1</td><td>1</td><td>8</td><td>1</td><td></td><td>8</td><td>1</td><td></td><td></td><td>8 1</td><td>1</td><td></td><td></td><td></td><td></td></td<>	1	7	1	1	8	1		8	1			8 1	1				
1 7 1 1 8 1 1 8 1	S	Slave address	Wr	А	Command code	А		Data byte low	А		Data	a byte high A	Ρ				
S Slave address Wr A Command code A S Slave address Rd A Data byte low A Data byte high N P S = start condition P = stop condition Host action Host action	Rece	ive byte \rightarrow read da	ta froi	m V	CNL36828P												
S = start condition P = stop condition A = acknowledge	1	7	1	1	8	1	1	7		1	1	8		1	8	1	1
P = stop condition Host action A = acknowledge VCNI 36828P response	S	Slave address	Wr	А	Command code	А	s	Slave address		Rd	А	Data byte low	'	A	Data byte high	Ν	Р
-	P = s A = a	top condition cknowledge	[

Fig. 39 - I²C Write and Read Protocol

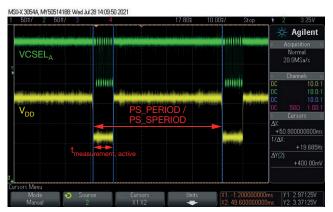
It is imperative that only the restart condition for the I²C read is implemented instead of the stop and restart condition. For example, Fig. 40 shows a logic analyzer screenshot of the SCL (pin 5) and SDA line (pin 6) when reading the register VCNL36828P_ID for the VCNL36828P with a slave address of 0x60. Here, the restart condition, indicated by the blue box, has been implemented and the low data byte of 0x28 matches the device ID stated in the datasheet for the VCNL36828P with the slave address of 0x60.

On the other hand, Fig. 41 shows the logic analyzer screenshot, but with an incorrect read I²C protocol when reading the register VCNL36828P_ID. Here, the stop and restart conditions have been applied, causing an error in the data field. As a result, the sensor writes a constant 0xFF and 0x07 in the PS_DATA register.

www.vishay.com

The DNA of tech.

Designing the VCNL36828P Into an Application


Fig. 41 - The Incorrect I²C Read When Reading the Register VCNL36828P_ID With Both Stop and Restart Conditions

Therefore, the designer should use the correct I²C library, especially the I²C read, from the microcontroller manufacturer that implements only the restart condition, without the stop condition before the restart condition. This is usually a typical mistake when communicating with the VCNL36828P, as shown in Fig. 41.

5.2 Timing

5.2.1 Proximity Measurement Timing

In auto mode, one complete proximity measurement depends on the PS_PERIOD or PS_SPERIOD setting. However, the sensor is only active within a short time, as shown in Fig. 42.

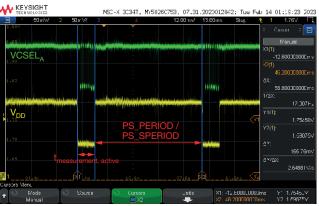


Fig. 43 - Proximity Measurement in Active Force Mode

On the other hand, one complete measurement in the active force mode requires adding both the active measurement period and PS_PERIOD or PS_SPERIOD as shown in Fig. 43.

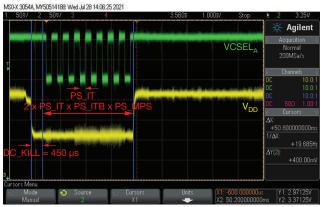
One active measurement period for both depends on the register settings PS_IT, PS_ITB, PS_MPS as well as DC_KILL as shown below:

t_{measurement, active} = 1.2 x (DC_KILL + (2 x PS_IT x PS_ITB x PS_MPS))

(2)

Revision: 06-Mar-2025

Document Number: 80359


For technical questions, contact: <u>consumersensors@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

Designing the VCNL36828P Into an Application

Factor 1.2 is included in the equation above to consider the part-to-part tolerance of 20 %. On the other hand, the term DC_KILL is the process where the sensor measures the DC noise in the background before the actual measurement pulse from the VCSEL is emitted. This DC noise signal will then be deducted from the total reflected signal. The time taken to complete the DC_KILL process depends on the PS_ITB setting. When PS_ITB = T = 25 μ s, DC_KILL takes 450 μ s to complete. Otherwise, when

PS_ITB = T = 50 μ s, DC_KILL takes 900 μ s to complete. These are shown in Fig. 44 and Fig. 45.

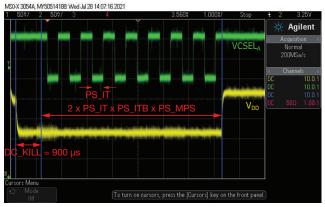


Fig. 44 - The Measurement Time When $PS_{ITB} = T = 25 \ \mu s$

Fig. 45 - The Measurement Time When $PS_{ITB} = T = 50 \ \mu s$

Example - Active Measurement Time With PS_ITB = 25 µs and PS_MPS = 1

For example, given PS_IT = 1T, PS_ITB = T = 25 μ s, PS_MPS = 1, the total active measurement time can be calculated as follows:

 $t_{measurement, active} = 1.2 x (450 \ \mu s + (2 x 1 x 25 \ \mu s x 1)) = 600 \ \mu s$

Example - Active Measurement Time With PS_ITB = 50 µs and PS_MPS = 8

For example, given PS_IT = 1T, PS_ITB = T = 50 μ s, PS_MPS = 8, the total active measurement time can be calculated as follows:

 $t_{measurement, active} = 1.2 x (900 \ \mu s + (2 x 1 x 50 \ \mu s x 8)) = 2.04 \ ms$

Document Number: 80359 🔳

Designing the VCNL36828P Into an Application

5.2.2 Timing Specification

Fig. 46 and Fig. 47 show the timing specification for the auto and active force mode, respectively.

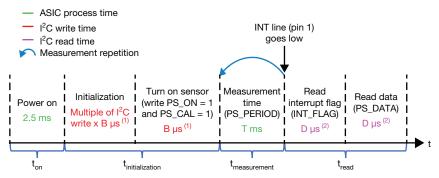


Fig. 46 - Timing Specification for the Auto Mode

Notes

- (1) B µs The parameter B refers to the time taken for a complete write I²C protocol. This depends on the selected I²C mode. Please refer to Table 16.
- (2) D µs The parameter D refers to the time taken for a complete read I²C protocol. This depends on the selected I²C mode. Please refer to Table 16.

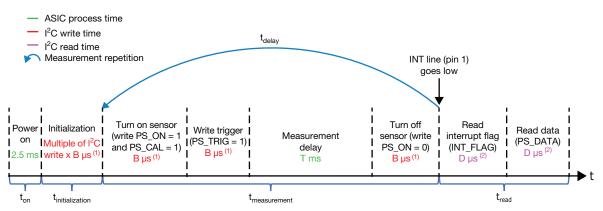


Fig. 47 - Timing Specification for the Active Force Mode

Notes

- (1) B µs The parameter B refers to the time taken for a complete write I²C protocol. This depends on the selected I²C mode. Please refer to Table 16.
- (2) D μs The parameter D refers to the time taken for a complete read I²C protocol. This depends on the selected I²C mode. Please refer to Table 16.

A measurement delay equal to the active measurement time defined by Equation 2 plus PS_PERIOD is required for the measurement to be completed after the trigger of the active force mode. The delay depends on the register settings of PS_IT, PS_ITB, PS_MPS, and PS_PERIOD. The required delay is:

Measurement delay = 1.2 x (time to trigger x t _{measurement}	_{t. active} + PS_PERIOD) =
1.2 x ((0.5 x PS_IT x PS_ITB) + DC_KILL + (2 x PS_IT x PS_IT	

Revision: 06-Mar-2025

Designing the VCNL36828P Into an Application

Factor 1.2 in the equation is needed to consider the 20 % part-to-part tolerance of the measurement. The individual I^2C write and read time per byte depends on the I^2C mode, as shown in Table 16:

TABLE 16	TABLE 16 - I ² C WRITE AND READ PROTOCOL TIME PER BYTE								
I ² C MODE	CLOCK FREQUENY (kHz) ⁽¹⁾	I ² C WRITE PROTOCOL TIME (µs) ⁽²⁾	I ² C READ PROTOCOL TIME (µs) ⁽²⁾						
Standard	100	400	500						
Fast	400	100	125						

Notes

(1) Maximum limit

⁽²⁾ Typical value with tolerance; it could vary depending on master

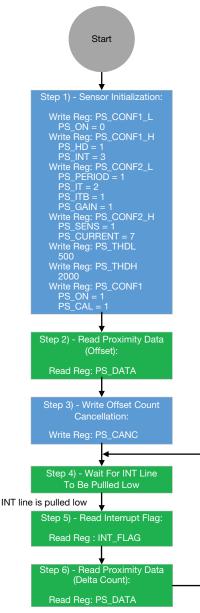
Example - Auto Mode With Standard I²C Mode

Table 17 shows an example of the timing specification for the Auto Mode when initializing five registers, as well as when turning on the sensor. The sensor needs approximately 4.9 ms for the total initialization phase. The exact timing depends on the I²C clock configuration from the master and the number of registers written. On the other hand, the sensor needs one measurement period to complete a measurement. In the case of when a PS_PERIOD of 50 ms has been selected, the measurement time is 50 ms. In many cases, the application uses the interrupt method to read the sensor and reduce power consumption. In this case, once the INT line (pin 1) has been pulled low, the interrupt service routine in the microcontroller will be executed and the microcontroller will then read the register INT_FLAG to clear the interrupt flag. The register PS_DATA will then be read. Both reading processes will each need 0.5 ms for the standard I²C mode. Therefore, the total measurement time is 51 ms.

		ICATION EXAMPLE NDARD I ² C MODE ⁽¹⁾	
PARAMETER	REGISTER	REMARKS	TIME (ms)
t _{on}	-	The power on reset after the V_{DD} pin is connected to the power supply	2.5
	PS_CONF1_L/H		0.4
t _{initialization}	PS_CONF2_L/H	Write the sensor settings	0.4
	PS_CONF3_L/H		0.4
	PS_THDL	Write the low threshold setting	0.4
	PS_THDH	Write the high threshold setting	0.4
	PS_CONF1_L/H	Turn on the sensor by writing PS_ON = 1 and PS_CAL = 1	0.4
t _{initialization_total}	-	-	4.9
t _{measurement}	-	Actual measurement time depends on the selected PS_PERIOD; here is an example of when PS_PERIOD = 50 ms	50
	INT_FLAG	Read the interrupt flag	0.5
t _{read}	PS_DATA	Read the proximity data	0.5
t _{measurement_total}	-	-	51

Notes

(1) Standard I²C mode comes with a 100 kHz clock frequency. One can approximate the time taken for a complete write and read I²C protocol to be 400 μs and 500 μs per byte respectively. Please refer to Table 16.


The DNA of tech.

Designing the VCNL36828P Into an Application

6. PROXIMITY MEASUREMENT

6.1 Software Flow Chart for the Proximity Measurement

Fig. 48 shows a typical software flow chart for the proximity measurement using the auto mode and enabled interrupt. The measurement starts with the initialization code. Please note that the provided sensor initialization code is just an example. In practice, the designer should change the initialization code based on the application's requirements. After the initialization, the sensor should perform the offset count cancellation by reading the proximity count without the object. This offset count should then be written to the offset cancellation register PS_CANC. After writing the cancellation register, the sensor should perform proximity measurement in a loop. Next, the microcontroller should wait for the interrupt line to be pulled low via an interrupt service routine. When the interrupt has been pulled low, the interrupt flag register and the proximity data will be read.

≻

Fig. 48 - Typical Software Flow Chart for the Auto Mode

The DNA of tech.

Designing the VCNL36828P Into an Application

6.2 Proximity Value vs. Distance Curve

The behavior of the proximity sensor can be characterized by the proximity value against the distance. In some applications, the sensor will not be placed underneath a window cover. The designer could then use the proximity value against the distance for the case without the window cover as a reference. On the other hand, most applications will have the requirement of placing the sensor underneath a window cover. Here, the proximity value against the distance for the case with the window cover can be used as a reference. The designer can expect a decrease in the dynamic range due to the increase of crosstalk from the window cover.

6.2.1 Proximity Value vs. Distance Curve Without the Window Cover

Fig. 49 and Fig. 50 show the typical proximity counts output against distance for three different driving currents and two integration times. Here, the measured reference object medium is the Kodak Gray Card. This card has approximately 18 % reflectivity at 940 nm. The sensor can detect up to 20 cm with a minimum of 70 delta counts when measuring with the Kodak Gray Card and when higher sensor settings of $PS_IT = 8T$ and $PS_CURRENT = 20$ mA have been selected. The dashed red line indicates this in Fig. 50. The minimum of 70 delta counts is usually enough to consider the sensor's tolerance of around \pm 20 % and account for the noise from the disturbing sources.

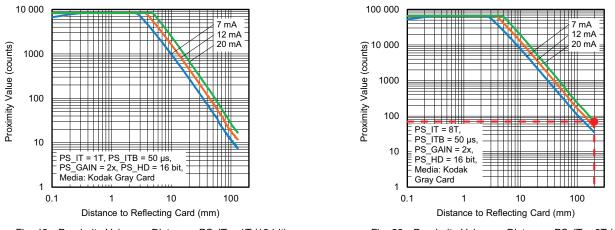
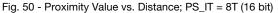
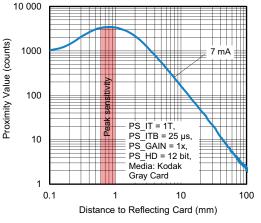
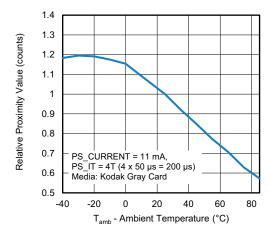



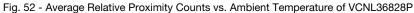
Fig. 49 - Proximity Value vs. Distance; PS_IT = 1T (13 bit)

While the Kodak Gray Card is used as a reference, in practice, the proximity values change with the different objects' reflectivity at the same distance. Therefore, the designer should consider this effect during the design phase.

The VCNL36828P also has a peak sensitivity between 0.6 mm and 1 mm as shown in Fig. 51. Peak sensitivity is the distance away from the sensor, in which the sensor has the highest response.

The DNA of tech.


Fig. 51 - Proximity Value vs. Distance; PS_IT = 1T

The sensor's detection range can be extended beyond 20 cm if the number of pulse PS_MPS increases from the lowest possible pulse of 1 to the highest possible of 8.

6.3 Temperature Behavior

When designing the VCNL36828P for the end application, the temperature behavior of the proximity counts should also be considered. Fig. 52 shows the average relative proximity counts against ambient temperature of VCNL36828P.

The sensor has a negative temperature coefficient as the temperature increases from room temperature to 85 °C. The designer \bigcirc should consider this behavior and design the end application with enough headroom for the proximity counts fluctuation with $\xrightarrow{}$ temperature.

Another good design approach to reduce the effect of the proximity counts fluctuation due to temperature is regular calibration without an object. One can observe that the change in proximity counts with temperature happens slower than the change in proximity counts with changing distance of an object. By observing the increase or decrease of offset counts, the system can recognize that as the change of temperature and proximity correction could be implemented.

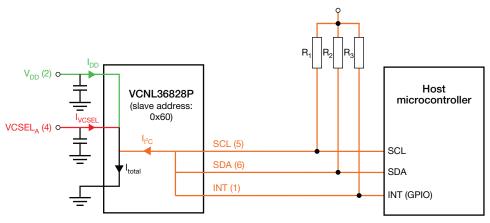
Revision: 06-Mar-2025	33	Document Number: 80359
	For technical questions, contact: consumersensors@vishay.com	
	T TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED I ECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishav.com	

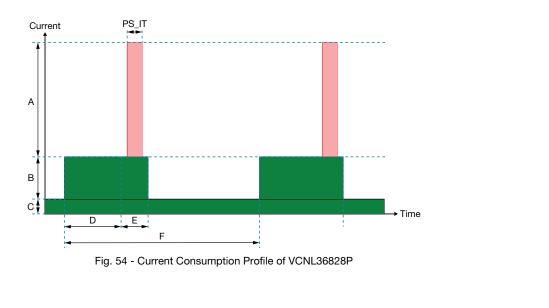
Designing the VCNL36828P Into an Application

7. AVERAGE CURRENT CONSUMPTION

The proximity sensor VCNL36828P has been developed for battery-powered devices such as true wireless stereo (TWS) earbuds, smart watches, etc. The designer needs to compromise between the performance and current consumption for such applications. VCNL36828P offers an average current consumption down to $5.85 \,\mu$ A.

Fig. 53 shows the current consumption components through the pins.




Fig. 53 - Current Consumption Components Through the Pins

The general total current consumption can be calculated as follows:

$$I_{\text{total}} = I_{\text{DD}} + I_{\text{VCSEL}} + I_{1^2 \text{C}}$$
(4)

The main current components are from I_{DD} and I_{VCSEL} . The current contribution from I_{I^2C} for I^2C communication is negligible if the interrupt is activated. However, if the polling mode is used, the current contribution from these pins should be considered in the calculation.

Fig. 54 shows the current consumption profile of VCNL36828P.

≻

Revision: 06-Mar-2025

Document Number: 80359
П

Designing the VCNL36828P Into an Application

Table 18 describes the parameters of the current consumption profile in Fig. 54.

TABLE 18 - AVERAGE CURRENT CONSUMPTION PARAMETER						
PARAMETER	PARAMETER NAME	VALUE	DESCRIPTION			
А	IVCSEL	7 mA to 20 mA	The magnitude of I_{VCSEL} depends on the selected PS_CURRENT setting; This current is drawn by the pin VCSEL_A			
В	I _{DD} (Active)	330 µA	I_{DD} (active) is the supply current consumed during the active state by the pin V_{DD}			
С	I _{DD} (Idle)	5 µA	I_{DD} (idle) is the supply current consumed during the idle state by the pin V_{DD}			
D	DC_KILL	450 µs / 900 µs	DC_KILL is the period where the sunlight and DC noise cancellation happens; the duration depends on the selected PS_ITB. When PS_ITB = $25 \ \mu$ s, DC_KILL = $450 \ \mu$ s and when PS_ITB = $50 \ \mu$ s, DC_KILL = $900 \ \mu$ s			
E	Proximity measurement pulse	2 x PS_IT x PS_ITB x PS_MPS	Proximity measurement is the duration in which the sensor sends the VCSEL pulse/s; The values depend on PS_IT, PS_ITB, and PS_MPS			
D + E ⁽¹⁾	Active measurement period	DC_KILL + (2 x PS_IT x PS_ITB x PS_MPS)	The active measurement period is the duration during which the sensor performs the complete proximity measurement, which consists of DC_KILL and proximity measurement pulse			
F	Measurement period	6.25 ms to 400 ms	The measurement period in which the measurement is repeated, which depends on the selected PS_PERIOD / PS_SPERIOD setting			

Note

 $^{(1)}$ The active measurement period could have ± 20 % part-to-part tolerance, which is not considered here

A low current consumption can be achieved in VCNL36828P due to a low supply current of 5 μ A during the idle state. When the sensor is switched on, it will always consume 5 μ A. This is indicated by the parameter "C" in Fig. 54 over the whole time as long as the sensor is switched on. During the active measurement period, as indicated by the parameter "D" and "E", the sensor consumes an additional current of 330 μ A on top of 5 μ A. Besides that, during the active measurement period, the sensor will emit a short current pulse PS_CURRENT with a duration of PS_IT. The number of pulses within the duration "E" will also be multiplied by the parameter PS_MPS.

The average current consumption over the measurement period PS_PERIOD in VCNL36828P with interrupt mode can be calculated as follows:

$$I_{average} = I_{DD}(idle) + \frac{((DC_KILL + (2 \times PS_IT \times PS_ITB \times PS_MPS)) \times I_{DD}(active)) + (PS_IT \times PS_ITB \times PS_CURRENT \times PS_MPS)}{PS_PERIOD}$$
(5)

Example - Average current Consumption Calculation

Table 19 shows the average current consumption example for PS_IT = 1T with PS_ITB = T = 25 μ s for different PS_PERIOD and PS_CURRENT.

TABLE 19 - AVERAGE CURRENT CONSUMPTION (PS_ITB = T = 25 μs, PS_IT = 1T)									
			PS_PERIOD / PS_SPERIOD (ms)						
PS_IT (µs)	PS_CURRENT (mA)	6.25	12.5	25	50	100	200	400	
25	7	59.40	32.20	18.60	11.80	8.40	6.70	5.85	
25	9	67.40	36.20	20.60	12.80	8.90	6.95	5.98	
25	11	75.40	40.20	22.60	13.80	9.40	7.20	6.10	
25	12	79.40	42.20	23.60	14.30	9.65	7.33	6.16	
25	15	91.40	48.20	26.60	15.80	10.40	7.70	6.35	
25	17	99.40	52.20	28.60	16.80	10.90	7.95	6.48	
25	19	107.40	56.20	30.60	17.80	11.40	8.20	6.60	
25	20	111.40	58.20	31.60	18.30	11.65	8.33	6.66	

Revision: 06-Mar-2025

Document Number: 80359 🔳

The DNA of tech.

Designing the VCNL36828P Into an Application

For example, given PS_IT = 1T, PS_ITB = T = 25 μ s, PS_MPS = 1, PS_PERIOD = 400 ms and PS_CURRENT = 7 mA, the average current consumption with negligible I_{I²C} can be calculated as follows:

 $I_{average} = 5 \ \mu A + \frac{((450 \ \mu s + (2 \ x \ 1 \ x \ 25 \ \mu s \ x \ 1)) \ x \ 330 \ \mu A) + (1 \ x \ 25 \ \mu s \ x \ 7 \ m A \ x \ 1)}{400 \ m s} = 5.85 \ \mu A$

Table 20 shows the average current consumption example for PS_IT = 4T with PS_ITB = T = 50 μ s and PS_MPS = 1 for different PS_PERIOD and PS_CURRENT.

TABLE 20	TABLE 20 - AVERAGE CURRENT CONSUMPTION (PS_ITB = T = 50 μs, PS_IT = 4T)							
		PS_PERIOD / PS_SPERIOD (ms)						
PS_IT (µs)	PS_CURRENT (mA)	6.25	12.5	25	50	100	200	400
200	7	297.64	151.32	78.16	41.58	23.29	14.15	9.57
200	9	361.64	183.32	94.16	49.58	27.29	16.15	10.57
200	11	425.64	215.32	110.16	57.58	31.29	18.15	11.57
200	12	457.64	231.32	118.16	61.58	33.29	19.15	12.07
200	15	553.64	279.32	142.16	73.58	39.29	22.15	13.57
200	17	617.64	311.32	158.16	81.58	43.29	24.15	14.57
200	19	681.64	343.32	174.16	89.58	47.29	26.15	15.57
200	20	713.64	359.32	182.16	93.58	49.29	27.15	16.07

For example, given PS_IT = 4T, PS_ITB = T = 50 μ s, PS_MPS = 1, PS_PERIOD = 400 ms and PS_CURRENT = 20 mA, the average current consumption with negligible I_{PC} can be calculated as follows:

$$I_{\text{average}} = 5 \ \mu\text{A} + \frac{((900 \ \mu\text{s} + (2 \ x \ 4 \ x \ 50 \ \mu\text{s} \ x \ 1)) \ x \ 330 \ \mu\text{A}) + (4 \ x \ 50 \ \mu\text{s} \ x \ 20 \ \text{mA} \ x \ 1)}{400 \ \text{ms}} = 16.07 \ \mu\text{A}$$

The designer could use the current calculator tool to calculate the average current consumption based on the selected settings here: <u>https://www.vishay.com/en/optoelectronics/proximity-sensor-current-calculator/</u>

Designing the VCNL36828P Into an Application

8. MECHANICAL AND OPTICAL DESIGN

The light wave spreads as it travels in space. This also applies to infrared light from the VCSEL, where it spreads with increasing distance from the sensor. Therefore, the window cover diameter needs to be adjusted to meet the minimum diameter requirement so that the opaque housing will not block the infrared signal. This minimum diameter depends on the distance between the top of the cover and the top of the sensor, the emission angle of the VCSEL, and the field of view of the photodiode. In general, the window diameter increases with increasing distance away from the sensor. The VCSEL in the sensor has an emission angle of $\pm 4.5^{\circ}$. On the other hand, the photodiode in the sensor has an angle of half sensitivity of $\pm 60^{\circ}$ in the X-axis direction and $\pm 45^{\circ}$ in the Y-axis direction. These are shown in Fig. 55 and Fig. 56.

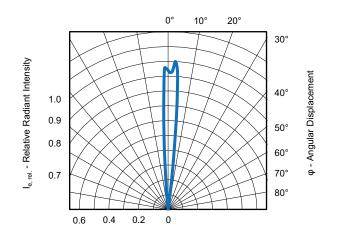


Fig. 55 - Relative Radiant Intensity vs. Angular Displacement of the VCSEL in the VCNL36828P

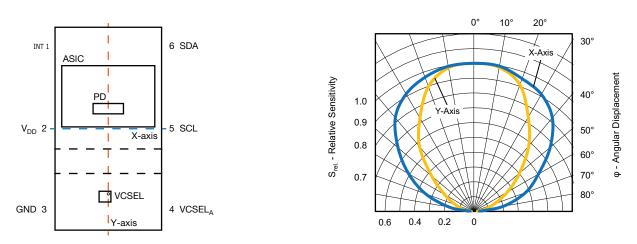


Fig. 56 - Relative Sensitivity vs. Angular Displacement of the Photodiode in the VCNL36828P

Since the VCSEL has a narrower emission angle than the field of view of the photodiode, it is possible to design the window asymmetrically. This is shown in Fig. 57.

The DNA of tech.

Designing the VCNL36828P Into an Application

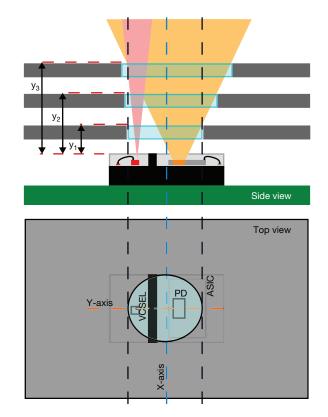


Fig. 57 - Asymmetric Window Design Where the Diameter Increases With Increasing Distance From the Sensor

The minimum window cover diameter D can be calculated as follows:

$$D = x + (y \times \tan(\theta_1)) + (y \times \tan(\theta_2)) = 1.5 \text{ mm} + (y \times \tan(\theta_1)) + (y \times \tan(\theta_2))$$
(6)

where x is the distance between the edge of the VCSEL and the edge of the photodiode, y is the distance between the top of the window cover and the top of the sensor, θ_1 is the emission angle of the VCSEL, and θ_2 is the field of view of the photodiode. x is equal to 1.5 mm after including the mechanical placement tolerance of the VCSEL and photodiode die in the sensor package. Fig. 58 shows the diameter calculation of the window cover with thickness T with increasing distance between the top of the window cover and the top of the sensor. The placement of the window cover directly on top of the sensor is usually preferred because it will avoid the peak sensitivity of the sensor. This will help to reduce the crosstalk. However, this is generally difficult to achieve in the assembly because there will likely be an air gap due to mechanical tolerance. If this is the case, an air gap of less than 1 mm is acceptable.

The DNA of tech.

Designing the VCNL36828P Into an Application

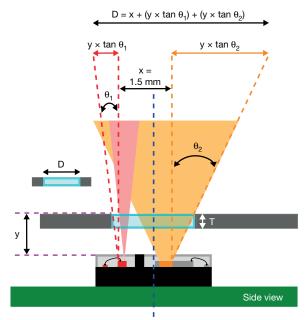


Fig. 58 - The Calculation of the Window Cover Diameter With an Air Gap

Due to mechanical design requirements, the window cover sometimes needs to be placed at a certain distance away from the sensor (with an air gap). In this case, the designer should meet the minimum diameter requirement and avoid placing it at the peak sensitivity of the sensor. The actual minimum diameter requirement depends on the assembly's mechanical tolerance capability so that the window cover positioning is accurate enough to prevent misalignment. Any misalignment of the housing and displacement of the PCB, especially the VCSEL side, could block the infrared signal, and this will cause an error in the measurement.

From Fig. 55, the theoretical value of θ_1 should be 4.5°. However, the mechanical tolerance during the assembly cannot be guaranteed. Therefore, it is recommended to consider a higher value θ_1 during the mechanical design process. This reduces the possibility of a blocked infrared signal, which increases the production yield of the end product. $\theta_1 = 10^\circ$ is usually sufficient to transmit the infrared signal from the sensor to the surrounding objects. On the other hand, $\theta_2 = 50^\circ$ is generally adequate to capture the reflected infrared signal from the object back to the photodiode of the sensor, even though the total field of view of the photodiode is \pm 60°. Table 21 shows the minimum window cover diameter calculation using Equation 6 with the distance y of between 0.5 mm and 4 mm.

TABLE 21 - MINIMUM WINDOW COVER DIAMETER							
y (mm)	x (mm)	θ ₁ (°)	θ ₂ (°)	D (mm)			
0.5	1.5	10	50	2.18			
1	1.5	10	50	2.87			
1.5	1.5	10	50	3.55			
2	1.5	10	50	4.24			
2.5	1.5	10	50	4.92			
3	1.5	10	50	5.60			
3.5	1.5	10	50	6.29			
4	1.5	10	50	6.97			

Document Number: 80359 🔳