

Optocoupler, Phototransistor Output, Low Input Current, High Isolation, Widebody Package

DESCRIPTION

The VOWA617A, VOWA618A series has a GaAlAs infrared emitting diode, which is optically coupled to a silicon planar phototransistor detector, and is incorporated in a 8-pin high isolating widebody package.

It features a high current transfer ratio at low input current, low coupling capacitance, and high isolation voltage.

Vishay's wide body couplers feature a high level of isolation distance, exhibiting an external creepage distance of ≥ 11 mm. This makes these parts ideal for applications with working voltages exceeding 1000 V, specifically for use in automotive, as well as high reliable industrial applications.

FEATURES

- AEC-Q102 qualified
- High CTR with low input current
- High isolation package
- Creepage ≥ 11 mm
- High collector emitter voltage, $V_{CEO} = 80$ V
- CTI 600
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

RoHS
COMPLIANT
HALOGEN
FREE
GREEN
(5-2008)

APPLICATIONS

- Galvanic and noise isolation
- Signal transmission
- Hybrid / electric vehicle applications
- Battery management
- System control

AGENCY APPROVALS

- UL1577 (pending)
- cUL (pending)
- DIN EN 60747-5-5 (VDE 0884-5) (pending)
- CQC (pending)

ORDERING INFORMATION													
PART NUMBER								CTR BIN			PACKAGE OPTION		
AGENCY CERTIFIED / PACKAGE		CTR (%)											
50 to 600		5 mA			100 to 200			160 to 320			200 to 400		
UL, cUL, VDE, CQC		VOWA617A-X018T			VOWA617A-3X018T			VOWA617A-4X018T			VOWA617A-9X018T		
1 mA													
50 to 600		100 to 200			160 to 320			200 to 400					
UL, cUL, VDE, CQC		VOWA618A-X018T			VOWA618A-3X018T			VOWA618A-4X018T			VOWA618A-9X018T		

Note

- Additional options may be possible, please contact sales office

ABSOLUTE MAXIMUM RATINGS ($T_{amb} = 25 \text{ }^{\circ}\text{C}$, unless otherwise specified)				
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT
INPUT				
Reverse voltage		V_R	5	V
Power dissipation		P_{diss}	80	mW
Forward current		I_F	50	mA
Surge forward current	$t_p \leq 10 \mu\text{s}$	I_{FSM}	1.5	A
Junction temperature		T_j	140	$^{\circ}\text{C}$
OUTPUT				
Collector emitter voltage		V_{CEO}	80	V
Emitter collector voltage		V_{ECO}	7	V
Collector current		I_C	50	mA
Power dissipation		P_{diss}	150	mW
Junction temperature		T_j	140	$^{\circ}\text{C}$
COUPLER				
Total power dissipation		P_{tot}	200	mW
Storage temperature range		T_{stg}	-40 to +150	$^{\circ}\text{C}$
Ambient temperature range		T_{amb}	-40 to +125	$^{\circ}\text{C}$
Soldering temperature	$t = 10 \text{ s}$	T_{sld}	260	$^{\circ}\text{C}$

Note

- Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operational sections of this document. Exposure to absolute maximum ratings for extended periods of the time can adversely affect reliability

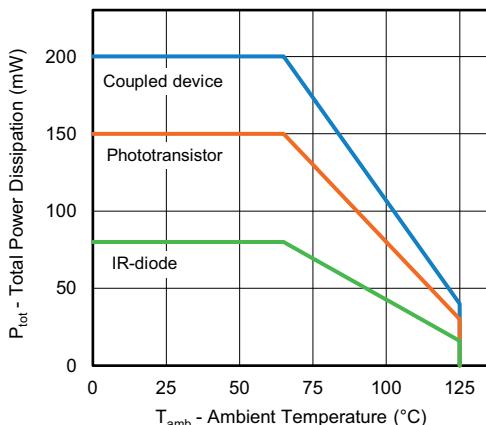


Fig. 1 - Power Dissipation vs. Ambient Temperature

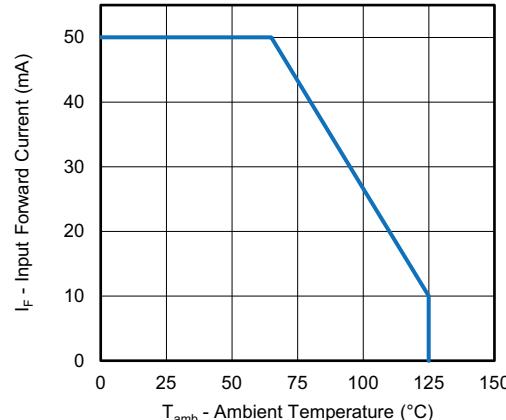


Fig. 2 - Maximum Forward Current vs. Ambient Temperature

RECOMMENDED OPERATING CONDITIONS ($T_{amb} = 25 \text{ }^{\circ}\text{C}$, unless otherwise specified)				
PARAMETER	SYMBOL	MIN.	MAX.	UNIT
Forward current	I_F	0.5	20	mA

ELECTRICAL CHARACTERISTICS ($T_{amb} = 25^\circ C$, unless otherwise specified)						
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT
INPUT						
Forward voltage	$I_F = 5 \text{ mA}$	V_F	-	1.34	1.5	V
Reverse current	$V_R = 5 \text{ V}$	I_R	-	-	10	μA
Capacitance	$V_R = 0 \text{ V}, f = 1 \text{ MHz}$	C_I	-	30	-	pF
OUTPUT						
Collector emitter leakage current	$V_{CE} = 10 \text{ V}$	I_{CEO}	-	10	100	nA
	$V_{CE} = 10 \text{ V}, I_F = 0 \text{ A}, T_{amb} = 100^\circ C$	I_{CEO}	-	3	50	μA
Collector emitter breakdown voltage	$I_C = 100 \mu\text{A}$	BV_{CEO}	80	-	-	V
Collector emitter capacitance	$V_{CE} = 5 \text{ V}, f = 1 \text{ MHz}$	C_{CE}	-	4	-	pF
COUPLER						
Collector emitter saturation voltage	$I_F = 5 \text{ mA}, I_C = 1 \text{ mA}$	V_{CEsat}	-	0.1	0.4	V
Cut-off frequency	$I_F = 10 \text{ mA}, V_{CC} = 5 \text{ V}, R_L = 100 \Omega$	f_{CTR}	-	241	-	kHz
Coupling capacitance	$f = 1 \text{ MHz}$	C_{IO}	-	0.9	-	pF

Note

- Minimum and maximum values are testing requirements. Typical values are characteristics of the device and are the result of engineering evaluation. Typical values are for information only and are not part of the testing requirements

CURRENT TRANSFER RATIO ($T_{amb} = 25^\circ C$, unless otherwise specified)							
PARAMETER	TEST CONDITION	PART	SYMBOL	MIN.	TYP.	MAX.	UNIT
I_C/I_F	$I_F = 5 \text{ mA}, V_{CE} = 5 \text{ V}$	VOWA617A	CTR	50	-	600	%
		VOWA617A-3	CTR	100	-	200	%
		VOWA617A-4	CTR	160	-	320	%
		VOWA617A-9	CTR	200	-	400	%
	$I_F = 1 \text{ mA}, V_{CE} = 5 \text{ V}$	VOWA618A	CTR	50	-	600	%
		VOWA618A-3	CTR	100	-	200	%
		VOWA618A-4	CTR	160	-	320	%
		VOWA618A-9	CTR	200	-	400	%

SWITCHING CHARACTERISTICS ($T_{amb} = 25^\circ C$, unless otherwise specified)						
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT
NON-SATURATED						
Rise time	$I_C = 2 \text{ mA}, V_{CC} = 5 \text{ V}, R_L = 100 \Omega$	t_r	-	2.6	-	μs
Fall time		t_f	-	3.9	-	μs
Turn-on time		t_{on}	-	4.0	-	μs
Turn-off time		t_{off}	-	4.4	-	μs
SATURATED						
Rise time	$I_F = 5 \text{ mA}, V_{CC} = 5 \text{ V}, R_L = 1.9 \text{ k}\Omega$	t_r	-	1.5	-	μs
Fall time		t_f	-	11.3	-	μs
Turn-on time		t_{on}	-	2.0	-	μs
Turn-off time		t_{off}	-	17.1	-	μs

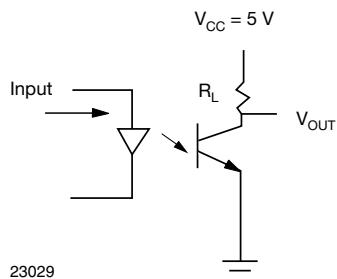


Fig. 3 - Test Circuit for Switching Characteristics

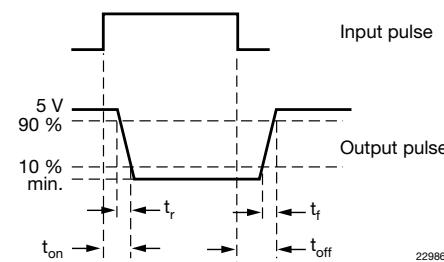


Fig. 4 - Parameter and Limit Definition

SAFETY AND INSULATION RATINGS				
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT
Climatic classification	According to IEC 68 part 1		40 / 125 / 21	
Pollution degree	According to DIN VDE 0109		2	
Comparative tracking index	Insulation group I	CTI	600	
Maximum rated withstanding isolation voltage	According to UL1577, $t = 1$ min	V_{ISO}	5300	V_{RMS}
Maximum transient isolation voltage	According to DIN EN 60747-5-5	V_{IOTM}	8000	V_{peak}
Maximum repetitive peak isolation voltage	According to DIN EN 60747-5-5	V_{IORM}	1500	V_{peak}
Maximum working isolation voltage	According to DIN EN 60747-5-5	V_{IOWM}	1060	V_{RMS}
Isolation resistance	$T_{amb} = 25$ °C, $V_{IO} = 500$ V	R_{IO}	$\geq 10^{12}$	Ω
	$T_{amb} = 125$ °C, $V_{IO} = 500$ V	R_{IO}	$\geq 10^{11}$	Ω
Output safety power		P_{SO}	800	mW
Input safety current		I_{SI}	350	mA
Input safety temperature		T_s	175	°C
Creepage distance	SMD-8, widebody, 400 mil (option 8)		≥ 11	mm
Clearance distance			≥ 11	mm
Input to output test voltage, method B	$V_{IORM} \times 1.875 = V_{PR}$, 100 % production test with $t_M = 1$ s, partial discharge < 5 pC	V_{PR}	2813	V_{peak}
Input to output test voltage, method A	$V_{IORM} \times 1.6 = V_{PR}$, 100 % sample test with $t_M = 10$ s, partial discharge < 5 pC	V_{PR}	2400	V_{peak}

Note

- As per IEC 60747-5-5, this optocoupler is suitable for "safe electrical insulation" only within the safety ratings. Compliance with the safety ratings shall be ensured by means of protective circuits.

TYPICAL CHARACTERISTICS ($T_{amb} = 25$ °C, unless otherwise specified)

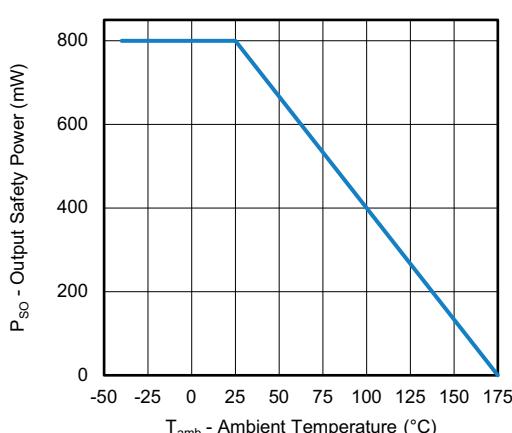


Fig. 5 - Output Safety Power vs. Ambient Temperature

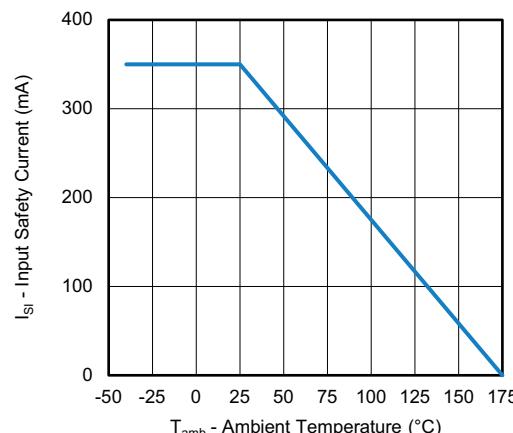


Fig. 6 - Input Safety Current vs. Ambient Temperature

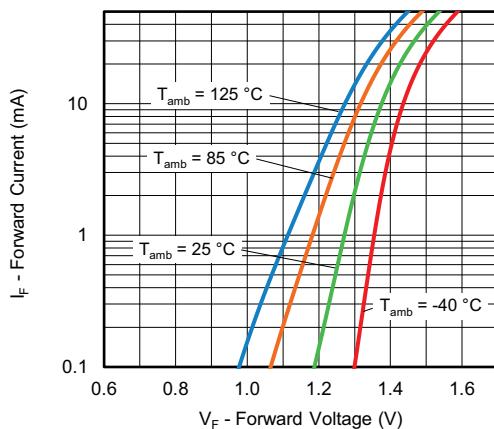


Fig. 7 - Forward Current vs. Forward Voltage

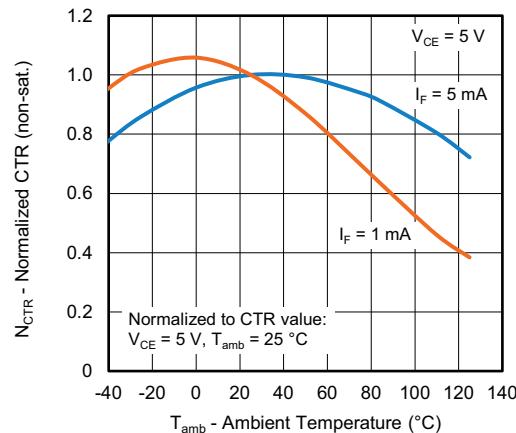


Fig. 10 - Normalized CTR (non-saturated) vs. Ambient Temperature

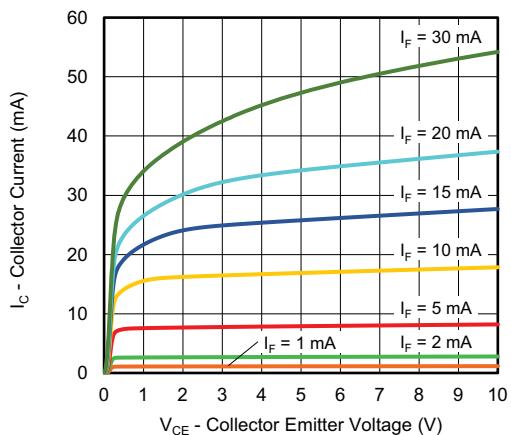


Fig. 8 - Collector Current vs. Collector Emitter Voltage (non-saturated)

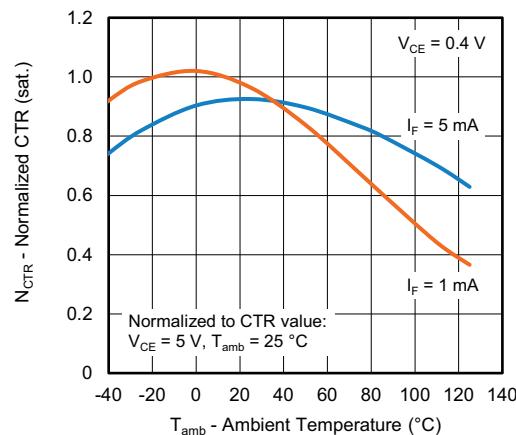


Fig. 11 - Normalized CTR (saturated) vs. Ambient Temperature

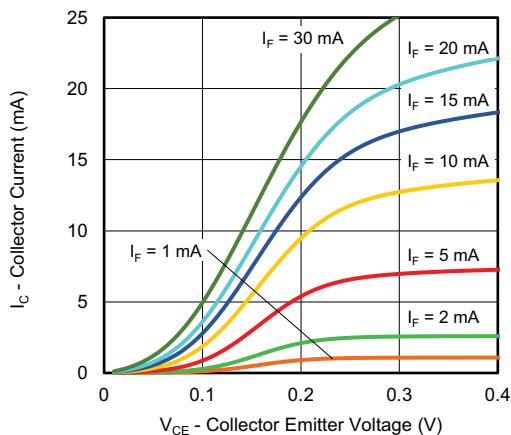


Fig. 9 - Collector Current vs. Collector Emitter Voltage (saturated)

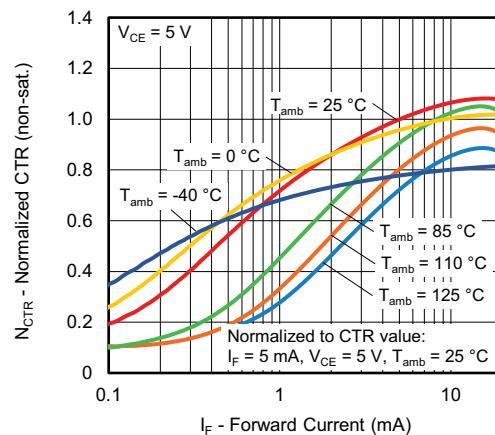


Fig. 12 - Normalized CTR (non-saturated) vs. Forward Current

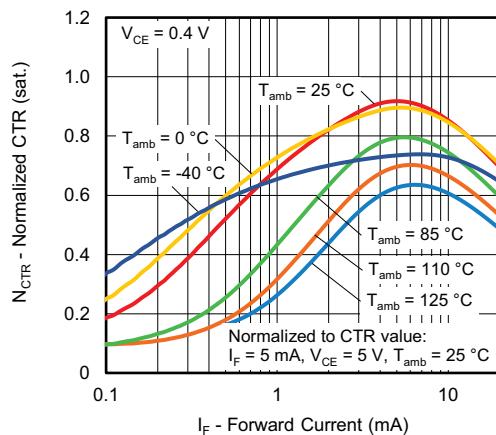


Fig. 13 - Normalized CTR (saturated) vs. Forward Current

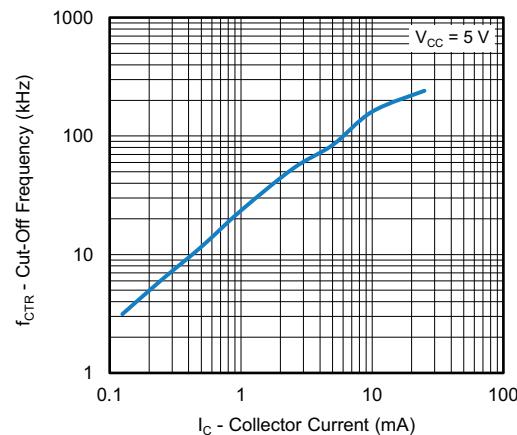


Fig. 16 - Cut-Off Frequency vs. Collector Current

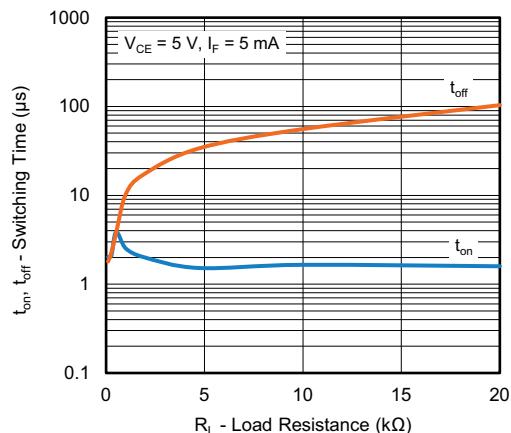


Fig. 14 - Switching Time vs. Load Resistance

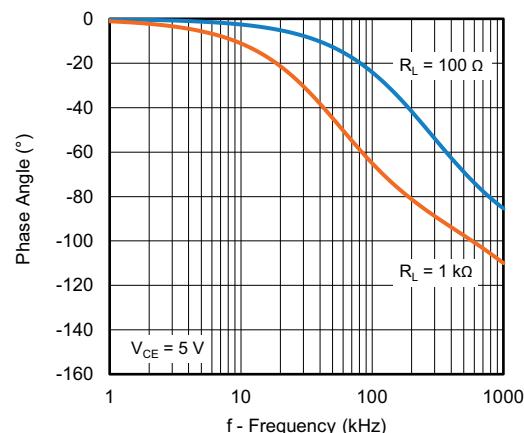


Fig. 17 - Phase Angle vs. Frequency

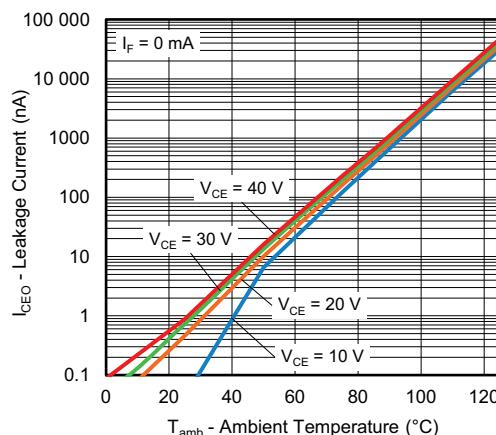
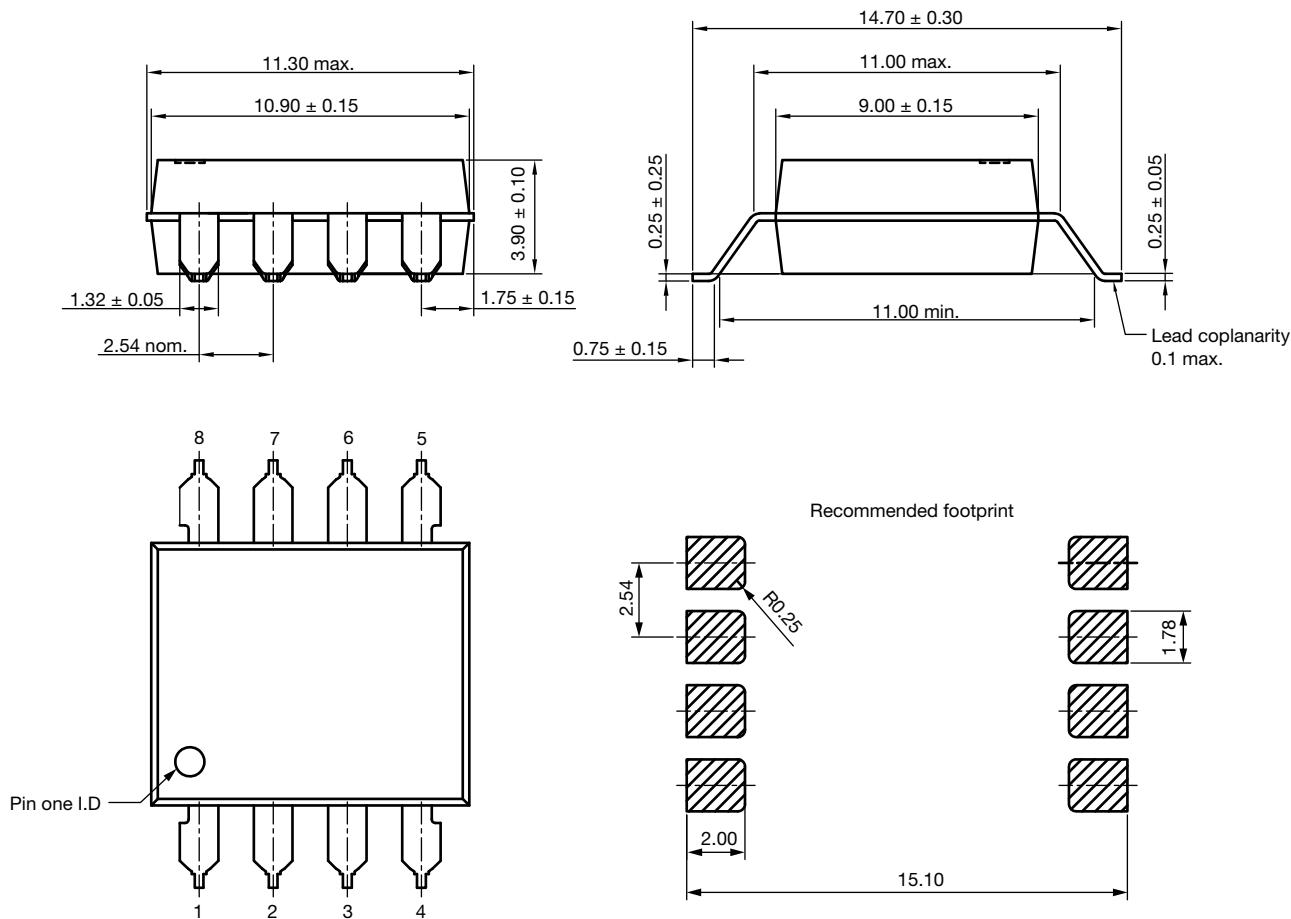
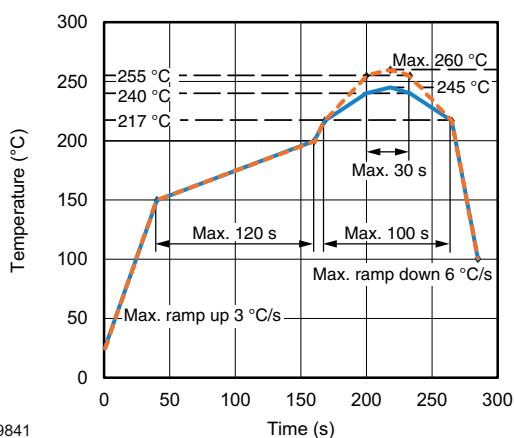




Fig. 15 - Leakage Current vs. Ambient Temperature

PACKAGE DIMENSIONS (in millimeters)

SOLDER PROFILES

19841

Fig. 18 - Lead (Pb)-free Reflow Solder Profile
According to J-STD-020 for SMD Devices

HANDLING AND STORAGE CONDITIONS

ESD level: HBM class 2

Floor life: 168 h

Conditions: $T_{amb} < 30 \text{ }^{\circ}\text{C}$, RH $\leq 60 \text{ \%}$

Moisture sensitivity level 3, according to J-STD-020

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Vishay products are not designed for use in life-saving or life-sustaining applications or any application in which the failure of the Vishay product could result in personal injury or death unless specifically qualified in writing by Vishay. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.