

www.vishay.com

Vishay Semiconductors

Optical Sensor With Photodiode Output for Optical Communication

DESCRIPTION

The VCND2045X02, VCND2045SLX02 are an optical sensor in a miniature SMD package used for optical data communication and reflective encoding. It has a compact construction where the emitting light source and the detector are arranged in the same plane. The operating infrared wavelength is 860 nm. The detector consists of a silicon photodiode. The sensor analog output signal (photo current) is triggered by light from other device for optical data transmission.

FEATURES

- Package type: SMD
- Package form: top view, side view
- Detector type: photodiode
- Dimensions (L x W x H in mm): 4.4 x 2.25 x 1.9
- Emitter wavelength: 860 nm
- Moisture sensitivity level (MSL): 3
- AEC-Q102 qualified
- Material categorization: for definitions of compliance please see www.vishav.com/doc?99912

AUTOMOTIVE GRADE

COMPLIANT
HALOGEN
FREE
GREEN
(5:2008)

APPLICATIONS

- Wireless optical communication
- · Position sensor
- · Optical switch
- Optical encoder

PRODUCT SUMMARY - EMITTER					
PART NUMBER	I _e (mW/sr) at I _F = 24 mA	φ (°)	λ _p (nm)	t _r (ns) ⁽¹⁾	
VCND2045X02	65	± 10	860	9	
VCND2045SLX02	65	± 10	860	9	

Note

(1) Conditions as in "Basic Characteristics"

PRODUCT SUMMARY - PHOTODIODE					
PART NUMBER	I_{ra} (μA) at E_e = 1 mW/cm ² , λ = 850 nm, V_R = 2 V	φ (°)	λ _p (nm)	DAYLIGHT BLOCKING FILTER INTEGRATED	
VCND2045X02	7.8	± 29	820	No	
VCND2045SLX02	7.8	± 29	820	No	

ORDERING INFORMATION					
ORDERING CODE	PACKAGING	VOLUME (1)	REMARKS		
VCND2045X02	Tape and reel	MOQ: 1000 pcs	Top looker variant		
VCND2045SLX02	Tape and reel	MOQ: 1500 pcs	Side looker variant		

Note

(1) MOQ: minimum order quantity

ABSOLUTE MAXIMUM RATINGS (T _{amb} = 25 °C, unless otherwise specified)						
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT		
INPUT (EMITTER)						
Reverse voltage		V_R	5	V		
Forward current		I _F	45	mA		
Junction temperature		TJ	125	°C		
Thermal resistance junction to ambient	Top looker, JESD 51	R _{thJA}	200	K/W		
	Side looker, JESD 51	R _{thJA}	250	K/W		
OUTPUT (DETECTOR)						
Reverse voltage		V_R	5	V		
SENSOR						
Total power dissipation	T _{amb} ≤ 25 °C	P _{tot}	120	mW		
Ambient temperature range		T _{amb}	-40 to +110	°C		
Storage temperature range		T _{stg}	-40 to +110	°C		
Soldering temperature	In accordance with Fig. 15	T _{sd}	260	°C		

ABSOLUTE MAXIMUM RATINGS

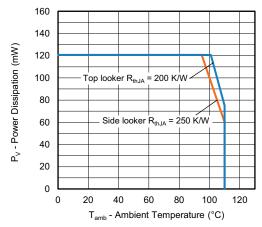


Fig. 1 - Power Dissipation vs. Ambient Temperature

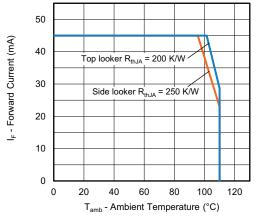


Fig. 2 - Forward Current vs. Ambient Temperature

BASIC CHARACTERISTICS (T _{amb} = 25 °C, unless otherwise specified)						
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT
INPUT (EMITTER)						
Forward voltage	I _F = 24 mA	V _F	-	2.5	3.3	V
Temperature coefficient of V _F	I _F = 24 mA	TKV _F	-	-1.8	-	mV/K
Reverse current		I _R	Not de	signed for operation	reverse	μΑ
Junction capacitance	V _R = 0 V, f = 1 MHz, E = 0	C _j	-	19.5	-	pF
Radiant intensity	$I_F = 24 \text{ mA}, t_p = 20 \text{ ms}$	l _e	35	65	100	mW/sr
Radiant power	$I_F = 24 \text{ mA}, t_p = 20 \text{ ms}$	фe	-	12	-	mW
Angle of half intensity		φ	-	± 10	-	0
Peak wavelength	I _F = 24 mA	λ_{P}	-	860	-	nm
Spectral bandwidth	I _F = 24 mA	Δλ _{P, 0.5}	-	37	-	nm

www.vishay.com

Vishay Semiconductors

BASIC CHARACTERISTICS (T _{amb} = 25 °C, unless otherwise specified)						
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT
OUTPUT (DETECTOR)						
Forward voltage	I _F = 50 mA	V_{F}	-	0.9	1.1	٧
Reverse dark current	$V_R = 10 \text{ V}, E = 0$	I _{ro}	-	0.01	10	nA
Diode capacitance	$V_R = 0 V, f = 1 MHz, E = 0$	C _D	-	5.8	-	pF
Open circuit voltage	$E_e = 1 \text{ mW/cm}^2, \lambda = 850 \text{ nm}$	V _O	-	429	-	mV
Temperature coefficient of V _O	$E_e = 1 \text{ mW/cm}^2, \lambda = 850 \text{ nm}$	TKV _O	-	-2.6	-	mV/K
Short circuit current	$E_e = 1 \text{ mW/cm}^2, \lambda = 850 \text{ nm}$	l _k	-	7.8	-	μΑ
Temperature coefficient of I_K	$E_e = 1 \text{ mW/cm}^2, \lambda = 850 \text{ nm}$	TKI _K	-	0.1	-	%/K
Reverse light current	$E_e = 1 \text{ mW/cm}^2$, $\lambda = 850 \text{ nm}$, $V_R = 2 \text{ V}$	I _{ra}	4	7.8	10	μΑ
Wavelength of peak sensitivity		λ_{p}	-	820	-	nm
Angle of half sensitivity		φ	-	± 29	-	0
SENSOR						
	V _R = 2 V, I _F = 24 mA, d = 4 mm, mirror, reflective setup ⁽¹⁾		-	166	-	
Reverse light current	$V_R = 2 \text{ V}, I_F = 24 \text{ mA}, d = 4 \text{ mm},$ KODAK Gray Card, gray side, reflective setup (1)		-	8	-	μА
neverse light current	$V_R = 2 \text{ V}, I_F = 24 \text{ mA}, d = 4 \text{ mm},$ KODAK Gray Card, white side, reflective setup $^{(1)}$	I _{ra}	-	42	-	
	$V_R = 2 \text{ V}, I_F = 24 \text{ mA}, d = 10 \text{ mm},$ communication setup $^{(2)}$		-	274	-	
Output rise time (20 % to 80 %)	Push-pull driver with $I_F = 24$ mA,	t _r	-	9	-	ns
Output fall time (80 % to 20 %)	$I_{ra} = 5 \mu A$, $V_R = 2 V$, communication setup (2)	t _f	-	9	-	ns

Notes

- (1) Reflective test setup as described in Fig. 4
- (2) Communication test setup as described in Fig. 5

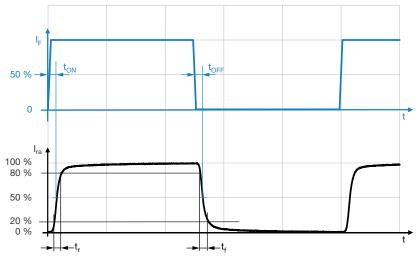


Fig. 3 - Switching Times

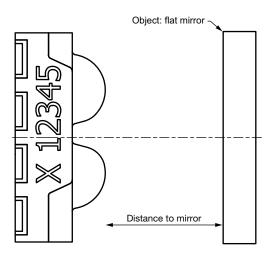


Fig. 4 - Test Setup - Reflective

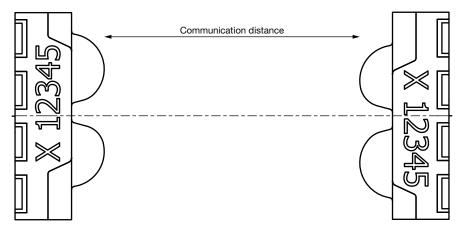


Fig. 5 - Test Setup - Communication

BASIC CHARACTERISTICS (T_{amb} = 25 °C, unless otherwise specified)

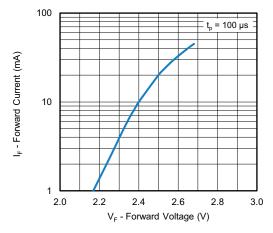


Fig. 6 - Forward Current vs. Forward Voltage

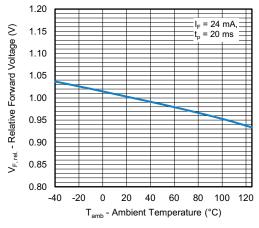


Fig. 7 - Relative Forward Voltage vs. Ambient Temperature

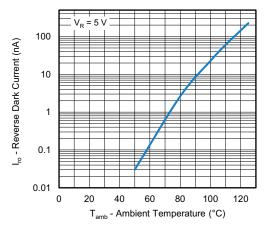


Fig. 8 - Reverse Dark Current vs. Ambient Temperature

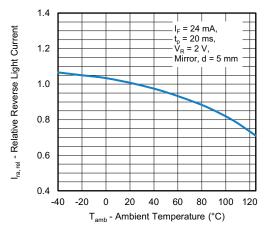


Fig. 9 - Relative Reverse Light Current vs. Ambient Temperature

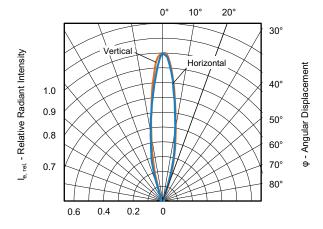


Fig. 10 - Relative Radiant Intensity vs. Angular Displacement

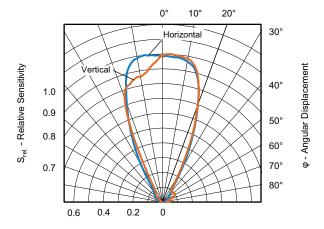


Fig. 11 - Relative Sensitivity vs. Angular Displacement

www.vishay.com

Vishay Semiconductors

FLOOR LIFE

Time between soldering and removing from MBB must not exceed the time indicated in J-STD-020:

Moisture sensitivity: level 3

Floor life: 168 h

Conditions: T_{amb} < 30 °C, RH < 60 %

DRYING

In case of moisture absorption devices should be baked before soldering. Conditions see J-STD-020 or recommended conditions:

192 h at 40 °C (+ 5 °C), RH < 5 %

or

96 h at 60 °C (+ 5 °C), RH < 5 %

REFLOW SOLDER PROFILE

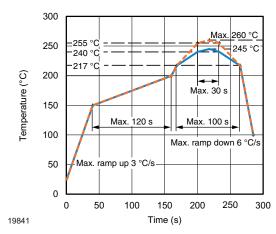


Fig. 15 - Lead (Pb)-free Reflow Solder Profile According to J-STD-020

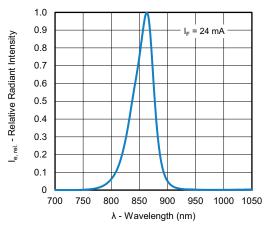


Fig. 12 - Relative Radiant Intensity vs. Wavelength

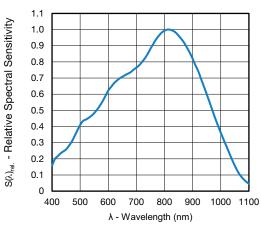


Fig. 13 - Relative Spectral Sensitivity vs. Wavelength

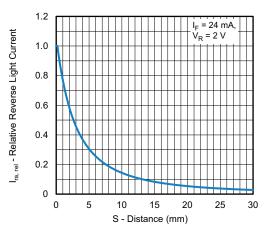
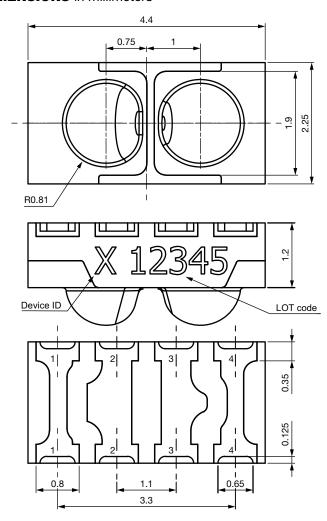



Fig. 14 - Relative Reverse Light Current vs. Distance (communication setup)

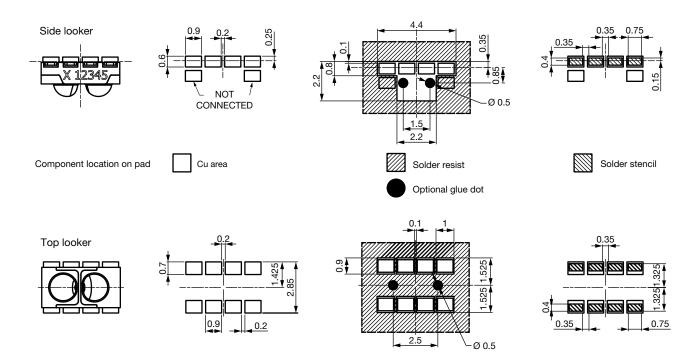
PACKAGE DIMENSIONS in millimeters

1.895

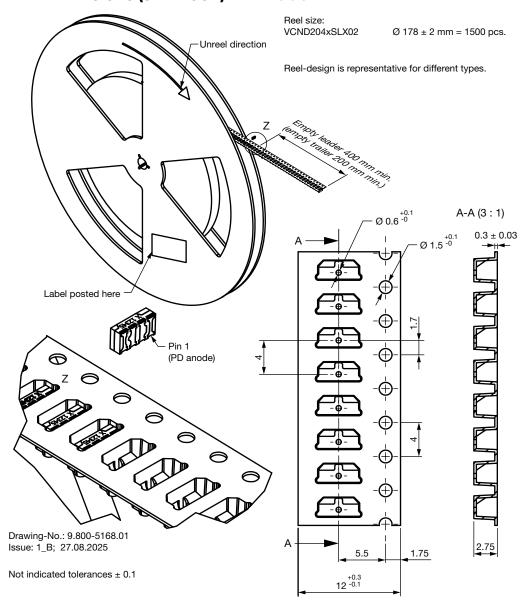
Not indicated tolerances \pm 0.1

Device ID: 1 = VCND2040 2 = VCND2045

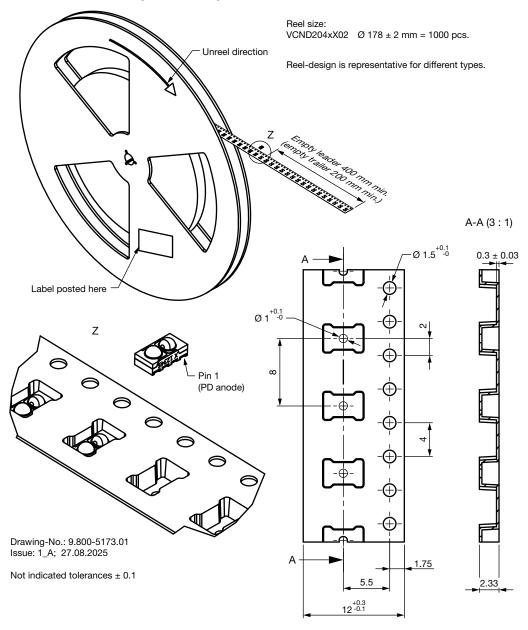
PIN	SIGNAL	
1	PD anode	
2	PD cathode	
3	LED anode	
4	LED cathode	


Technical drawings according to DIN specification

Drawing-No.: 6.550-5376.01-4 Issue: 1_A; 27.08.2025



RECOMMENDED SOLDER PAD in millimeters



TAPE AND REEL DIMENSIONS (SIDE LOOK) in millimeters

TAPE AND REEL DIMENSIONS (TOP LOOK) in millimeters

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Vishay products are not designed for use in life-saving or life-sustaining applications or any application in which the failure of the Vishay product could result in personal injury or death unless specifically qualified in writing by Vishay. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.