DESCRIPTION

TSML1000 is an infrared, 940 nm emitting diode in GaAlAs multi quantum well (MQW) technology with high radiant power and high speed molded in a clear, untinted plastic package (with lens) for surface mounting (SMD).

FEATURES

- Package type: surface mount
- Package form: GW, RGW, yoke, axial
- Dimensions (L x W x H in mm): 2.5 x 2 x 2.7
- Peak wavelength: $\lambda_p = 940$ nm
- High radiant power
- High radiant intensity
- Angle of half intensity: $\varphi = \pm 12^\circ$
- Low forward voltage
- Suitable for high pulse current operation
- Good spectral matching with Si photodetectors
- Versatile terminal configurations
- Package matches with detector TEMT1000
- Floor life: 168 h, MSL 3, acc. J-STD-020
- Material categorization: For definitions of compliance please see www.vishay.com/doc?99912

APPLICATIONS

- For remote control
- Punched tape readers
- Encoder
- Photointerrupters

PRODUCT SUMMARY

<table>
<thead>
<tr>
<th>COMPONENT</th>
<th>I_e (mW/sr)</th>
<th>φ (deg)</th>
<th>λ_p (nm)</th>
<th>t_r (ns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSML1000</td>
<td>11</td>
<td>± 12</td>
<td>940</td>
<td>15</td>
</tr>
<tr>
<td>TSML1020</td>
<td>11</td>
<td>± 12</td>
<td>940</td>
<td>15</td>
</tr>
<tr>
<td>TSML1030</td>
<td>11</td>
<td>± 12</td>
<td>940</td>
<td>15</td>
</tr>
<tr>
<td>TSML1040</td>
<td>11</td>
<td>± 12</td>
<td>940</td>
<td>15</td>
</tr>
</tbody>
</table>

Note

- Test conditions see table “Basic Characteristics”

ORDERING INFORMATION

<table>
<thead>
<tr>
<th>ORDERING CODE</th>
<th>PACKAGING</th>
<th>REMARKS</th>
<th>PACKAGE FORM</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSML1000</td>
<td>Tape and reel</td>
<td>MOQ: 1000 pcs, 1000 pcs/reel</td>
<td>Reverse gullwing</td>
</tr>
<tr>
<td>TSML1020</td>
<td>Tape and reel</td>
<td>MOQ: 1000 pcs, 1000 pcs/reel</td>
<td>Gullwing</td>
</tr>
<tr>
<td>TSML1030</td>
<td>Tape and reel</td>
<td>MOQ: 1000 pcs, 1000 pcs/reel</td>
<td>Yoke</td>
</tr>
<tr>
<td>TSML1040</td>
<td>Bulk</td>
<td>MOQ: 1000 pcs, 1000 pcs/bulk</td>
<td>Axial leads</td>
</tr>
</tbody>
</table>

Note

- MOQ: minimum order quantity
ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITION</th>
<th>SYMBOL</th>
<th>VALUE</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reverse voltage</td>
<td></td>
<td>(V_R)</td>
<td>5</td>
<td>V</td>
</tr>
<tr>
<td>Forward current</td>
<td></td>
<td>(I_F)</td>
<td>100</td>
<td>mA</td>
</tr>
<tr>
<td>Peak forward current (t_p/T = 0.5, t_p = 100 \mu s)</td>
<td></td>
<td>(I_{FM})</td>
<td>200</td>
<td>mA</td>
</tr>
<tr>
<td>Surge forward current (t_p = 100 \mu s)</td>
<td></td>
<td>(I_{FSM})</td>
<td>1.0</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation</td>
<td></td>
<td>(P_V)</td>
<td>190</td>
<td>mW</td>
</tr>
<tr>
<td>Junction temperature</td>
<td></td>
<td>(T_J)</td>
<td>100</td>
<td>°C</td>
</tr>
<tr>
<td>Operating temperature range</td>
<td></td>
<td>(T_{amb})</td>
<td>-40 to +85</td>
<td>°C</td>
</tr>
<tr>
<td>Storage temperature range</td>
<td></td>
<td>(T_{stg})</td>
<td>-40 to +100</td>
<td>°C</td>
</tr>
<tr>
<td>Soldering temperature</td>
<td>(t \leq 5) s</td>
<td>(T_{sd})</td>
<td>< 260</td>
<td>°C</td>
</tr>
<tr>
<td>Thermal resistance junction/ambient</td>
<td>Soldered on PCB, pad dimensions: 4 mm x 4 mm</td>
<td>(R_{thJA})</td>
<td>400</td>
<td>°C</td>
</tr>
</tbody>
</table>

Fig. 1 - Power Dissipation Limit vs. Ambient Temperature

Fig. 2 - Forward Current vs. Ambient Temperature

BASIC CHARACTERISTICS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITION</th>
<th>SYMBOL</th>
<th>MIN.</th>
<th>TYP.</th>
<th>MAX.</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward voltage</td>
<td>(I_F = 20) mA, (t_p = 20) ms</td>
<td>(V_F)</td>
<td>1.2</td>
<td>1.5</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(I_F = 1) A, (t_p = 100) \mu s</td>
<td>(V_F)</td>
<td>2.2</td>
<td></td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Temperature coefficient of (V_F)</td>
<td>(I_F = 1) mA</td>
<td>(T_K_{VF})</td>
<td>-1.8</td>
<td></td>
<td>mV/K</td>
<td></td>
</tr>
<tr>
<td>Reverse current</td>
<td>(V_R = 5) V</td>
<td>(I_R)</td>
<td></td>
<td>10</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>Junction capacitance</td>
<td>(V_R = 0) V, (f = 1) MHz, (E = 0)</td>
<td>(C_j)</td>
<td>40</td>
<td></td>
<td>pF</td>
<td></td>
</tr>
<tr>
<td>Radiant intensity</td>
<td>(I_F = 20) mA, (t_p = 20) ms</td>
<td>(I_e)</td>
<td>3</td>
<td>11</td>
<td>15</td>
<td>mW/sr</td>
</tr>
<tr>
<td>Radiant power</td>
<td>(I_F = 100) mA, (t_p = 20) ms</td>
<td>(\phi_e)</td>
<td>40</td>
<td></td>
<td>mW</td>
<td></td>
</tr>
<tr>
<td>Temperature coefficient of (\phi_e)</td>
<td>(I_F = 20) mA</td>
<td>(T_K_{\phi_e})</td>
<td>-0.6</td>
<td></td>
<td>%/K</td>
<td></td>
</tr>
<tr>
<td>Angle of half intensity</td>
<td>(\phi)</td>
<td>(\pm 12)</td>
<td></td>
<td></td>
<td>deg</td>
<td></td>
</tr>
<tr>
<td>Peak wavelength</td>
<td>(I_F = 100) mA</td>
<td>(\lambda_p)</td>
<td>940</td>
<td></td>
<td>nm</td>
<td></td>
</tr>
<tr>
<td>Spectral bandwidth</td>
<td>(I_F = 100) mA</td>
<td>(\Delta \lambda)</td>
<td>30</td>
<td></td>
<td>nm</td>
<td></td>
</tr>
<tr>
<td>Temperature coefficient of (\lambda_p)</td>
<td>(I_F = 100) mA</td>
<td>(T_K_{\lambda_p})</td>
<td>0.2</td>
<td></td>
<td>nm/K</td>
<td></td>
</tr>
<tr>
<td>Rise time</td>
<td>(I_F = 100) mA</td>
<td>(t_r)</td>
<td>15</td>
<td></td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Fall time</td>
<td>(I_F = 100) mA</td>
<td>(t_f)</td>
<td>15</td>
<td></td>
<td>ns</td>
<td></td>
</tr>
</tbody>
</table>
BASIC CHARACTERISTICS \((T_{amb} = 25 \, ^\circ\text{C}, \text{unless otherwise specified}) \)

Fig. 3 - Pulse Forward Current vs. Pulse Duration

- \(t_p \)- Pulse Duration (ms): 0.01, 0.10, 1.00, 10.00, 100.00
- \(I_f \)- Forward Current (mA): 0.1, 0.05, 0.02, 0.01
- \(t_p/T = 0.01 \)

Fig. 4 - Forward Current vs. Forward Voltage

- \(V_f \)- Forward Voltage (V): 1, 2, 3
- \(I_f \)- Forward Current (mA): 0.1, 0.02, 0.05, 0.1
- \(t_p = 100 \mu\text{s} \)
- \(I_f/T = 0.001 \)

Fig. 5 - Radiant Intensity vs. Forward Current

- \(I_f \)- Forward Current (mA): 1, 10, 100, 1000
- \(I_f \)- Radiant Intensity (mW/sr): 0.1, 1, 10, 100
- \(t_p = 100 \mu\text{s} \)

Fig. 6 - Radiant Power vs. Forward Current

- \(I_f \)- Forward Current (mA): 1, 10, 100, 1000
- \(I_f \)- Radiant Power (mW): 0.1, 0.5, 1.0
- \(t_p = 100 \mu\text{s} \)

Fig. 7 - Relative Radiant Intensity/Power vs. Ambient Temperature

- \(T_{amb} \)- Ambient Temperature (°C): 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140
- \(I_f = 20 \, mA \)
- \(I_e \text{rel} = I_e/I_e(T=25^\circ\text{C}) \)

Fig. 8 - Relative Radiant Power vs. Wavelength

- \(\lambda \)- Wavelength (nm): 840, 880, 920, 960, 1000, 1040
- \(I_f = 30 \, mA \)
- \(\Phi_{e\text{rel}} \)- Relative Radiant Power (%)
PRECAUTIONS FOR USE

1. Over-current-proof

Customer must apply resistors for protection, otherwise slight voltage shift will cause big current change (burn out will happen).

2. Storage

- Storage temperature and rel. humidity conditions are: 5 °C to 35 °C, R.H. 60 %.
- Floor life must not exceed 168 h, acc. to JEDEC level 3, J-STD-020.

Once the package is opened, the products should be used within a week. Otherwise, they should be kept in a damp proof box with desiccant. Considering tape life, we suggest to use products within one year from production date.

- If opened more than one week in an atmosphere 5 °C to 35 °C, R.H. 60 %, devices should be treated at 60 °C ± 5 °C for 15 h.
- If humidity indicator in the package shows pink color (normal blue), then devices should be treated with the same conditions as 2.3.
PACKAGE DIMENSIONS in millimeters: **TSML1000**

![Diagram of TSML1000 package dimensions]

PACKAGE DIMENSIONS in millimeters: **TSML1020**

![Diagram of TSML1020 package dimensions]
REEL DIMENSIONS in millimeters

Unreel direction

Tape position coming out from reel

Label posted here

Leader and trailer tape:

Parts mounted

Empty leader (400 mm, min.)

Direction of pulling out

Empty trailer (200 mm, min.)

TAPPING DIMENSIONS in millimeters: **TSML1000**

Anode

Feed direction

Quantity per reel: 1000 pcs or 5000 pcs

For technical questions, contact: emittertechsupport@vishay.com

This document is subject to change without notice. The products described herein and this document are subject to specific disclaimers, set forth at www.vishay.com/doc?91000
Taping Dimensions in millimeters: **TSML1020**

![Taping Dimensions Diagram](image)

TSML1030

![Taping Dimensions Diagram](image)
Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer’s responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer’s technical experts. Product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.