Ultrabright White LED, Ø 5 mm Untinted Non-Diffused Package

DESCRIPTION
The VLHW5100 is a clear, non-diffused 5 mm LED for high end applications where supreme luminous intensity required. These lamps with clear untinted plastic case utilize the highly developed ultrabright InGaN technologies. The lens and the viewing angle is optimized to achieve best performance of light output and visibility.

PRODUCT GROUP AND PACKAGE DATA
- Product group: LED
- Package: 5 mm
- Product series: standard
- Angle of half intensity: ±10°

FEATURES
- Untinted non-diffused lens
- Utilizing ultrabright InGaN technology
- High luminous intensity
- Luminous intensity and color categorized for each packing unit
- ESD-withstand voltage: up to 4 kV according to JESD22-A114-B
- Circuit protection by Zener diode
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

APPLICATIONS
- Interior and exterior lighting
- Outdoor LED panels
- Instrumentation and front panel indicators
- Replaces incandescent lamps
- Light guide compatible

PARTS TABLE

<table>
<thead>
<tr>
<th>PART</th>
<th>COLOR</th>
<th>LUMINOUS INTENSITY (mcd)</th>
<th>COORDINATE (x, y)</th>
<th>FORWARD VOLTAGE (V)</th>
<th>TECHNOLOGY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>AT IF (mA)</td>
<td>MIN. TYP. MAX.</td>
<td>MIN. TYP. MAX.</td>
<td>MIN. TYP. MAX.</td>
</tr>
<tr>
<td>VLHW5100</td>
<td>White</td>
<td>5600</td>
<td>11 200</td>
<td>0.33, 0.33</td>
<td>2.8</td>
</tr>
</tbody>
</table>

ABSOLUTE MAXIMUM RATINGS (T_{amb} = 25 °C, unless otherwise specified)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITION</th>
<th>SYMBOL</th>
<th>VALUE</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reverse voltage</td>
<td></td>
<td>VR</td>
<td>5</td>
<td>V</td>
</tr>
<tr>
<td>DC forward current</td>
<td></td>
<td>IF</td>
<td>30</td>
<td>mA</td>
</tr>
<tr>
<td>Peak forward current</td>
<td>at 1 kHz, tf/T = 0.1</td>
<td>I_{FSM}</td>
<td>0.1</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation</td>
<td></td>
<td>PV</td>
<td>100</td>
<td>mW</td>
</tr>
<tr>
<td>Zener reverse current</td>
<td></td>
<td>I_{Z}</td>
<td>100</td>
<td>mA</td>
</tr>
<tr>
<td>Junction temperature</td>
<td></td>
<td>T_{j}</td>
<td>100</td>
<td>°C</td>
</tr>
<tr>
<td>Operating temperature range</td>
<td></td>
<td>T_{amb}</td>
<td>-40 to +100</td>
<td>°C</td>
</tr>
<tr>
<td>Storage temperature range</td>
<td></td>
<td>T_{stg}</td>
<td>-40 to +100</td>
<td>°C</td>
</tr>
<tr>
<td>Soldering temperature</td>
<td>t ≤ 5 s</td>
<td>T_{sd}</td>
<td>260</td>
<td>°C</td>
</tr>
<tr>
<td>Thermal resistance junction-to-ambient</td>
<td></td>
<td>R_{thJA}</td>
<td>400</td>
<td>K/W</td>
</tr>
</tbody>
</table>

For technical questions, contact: LED@vishay.com
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?791000
OPTICAL AND ELECTRICAL CHARACTERISTICS (T_{amb} = 25 °C, unless otherwise specified)

WHITE VLHW5100

PARAMETER	**TEST CONDITION**	**PART**	**SYMBOL**	**MIN.**	**TYP.**	**MAX.**	**UNIT**
Luminous intensity | I_{F} = 20 mA | VLHW5100 | I_{V} | 5600 | - | 11 200 | mcd
Chromaticity coordinate x acc. to CIE 1931 | I_{F} = 20 mA | x | - | 0.33 | - | - |
Chromaticity coordinate y acc. to CIE 1931 | I_{F} = 20 mA | y | - | 0.33 | - | - |
Angle of half intensity | I_{F} = 20 mA | \(\varphi \) | - | \(\pm 10 \) | - | - | °
Forward voltage | I_{F} = 20 mA | V_{F} | 2.8 | - | 3.6 | - | V
Reverse current | V_{R} = 5 V | I_{R} | - | - | 50 | - | \(\mu A \)
Temperature coefficient of V_{F} | I_{F} = 20 mA | TC_{V_{F}} | - | -4 | - | - | m\(V/K \)
Temperature coefficient of I_{V} | I_{F} = 20 mA | TC_{I_{V}} | - | -0.5 | - | - | % / K

CHROMATICITY COORDINATED CLASSIFICATION

GROUP	MIN. \(X \)	MAX. \(X \)	MIN. \(Y \)	MAX. \(Y \)
3A | 0.2900 | 0.3025 | \(y = 1.4x - 0.121 \) | \(y = 1.4x - 0.071 \)
3B | 0.3025 | 0.3150 | \(y = 1.4x - 0.121 \) | \(y = 1.4x - 0.071 \)
3C | 0.2900 | 0.3025 | \(y = 1.4x - 0.171 \) | \(y = 1.4x - 0.121 \)
3D | 0.3025 | 0.3150 | \(y = 1.4x - 0.171 \) | \(y = 1.4x - 0.121 \)
4A | 0.3150 | 0.3275 | \(y = 1.4x - 0.121 \) | \(y = 1.4x - 0.071 \)
4B | 0.3275 | 0.3400 | \(y = 1.4x - 0.121 \) | \(y = 1.4x - 0.071 \)
4C | 0.3150 | 0.3275 | \(y = 1.4x - 0.171 \) | \(y = 1.4x - 0.121 \)
4D | 0.3275 | 0.3400 | \(y = 1.4x - 0.171 \) | \(y = 1.4x - 0.121 \)
5A | 0.3400 | 0.3525 | \(y = 1.4x - 0.121 \) | \(y = 1.4x - 0.071 \)
5B | 0.3525 | 0.3650 | \(y = 1.4x - 0.121 \) | \(y = 1.4x - 0.071 \)
5C | 0.3400 | 0.3525 | \(y = 1.4x - 0.171 \) | \(y = 1.4x - 0.121 \)
5D | 0.3525 | 0.3650 | \(y = 1.4x - 0.171 \) | \(y = 1.4x - 0.121 \)

Note
- Chromaticity coordinate groups are tested with a tolerance of \(\pm 0.01 \)

LUMINOUS INTENSITY CLASSIFICATION

GROUP	LIGHT INTENSITY (mcd)	STANDARD	MIN.	MAX.
DB | 5600 | 7100
EA | 7100 | 9000
EB | 9000 | 11 200

Note
- Luminous intensity is tested with an accuracy of \(\pm 11 \% \).

FORWARD VOLTAGE CLASSIFICATION

GROUP	FORWARD VOLTAGE (V)	FORWARD	MIN.	MAX.
0 | 2.8 | 2.8 | 3.0
1 | 3.0 | 3.0 | 3.2
2 | 3.2 | 3.2 | 3.4
3 | 3.4 | 3.4 | 3.6

Note
- Forward voltage is tested with an accuracy of \(\pm 0.1 \) V
TYPICAL CHARACTERISTICS (\(T_{\text{amb}} = 25 \degree \text{C}, \) unless otherwise specified)

Fig. 1 - Forward Current vs. Ambient Temperature

![Graph showing Forward Current vs. Ambient Temperature](image1)

Fig. 2 - Relative Luminous Intensity vs. Angular Displacement

![Graph showing Relative Luminous Intensity vs. Angular Displacement](image2)

Fig. 3 - Relative Intensity vs. Wavelength

![Graph showing Relative Intensity vs. Wavelength](image3)

Fig. 4 - Forward Current vs. Forward Voltage

![Graph showing Forward Current vs. Forward Voltage](image4)

Fig. 5 - Relative Luminous Flux vs. Forward Current

![Graph showing Relative Luminous Flux vs. Forward Current](image5)

Fig. 6 - Relative Luminous Intensity vs. Ambient Temperature

![Graph showing Relative Luminous Intensity vs. Ambient Temperature](image6)
Fig. 7 - Change of Forward Voltage vs. Ambient Temperature

Fig. 8 - Coordinates of Colorgroups

Fig. 9 - Chromaticity Coordinate Shift vs. Forward Current
 PACKAGE DIMENSIONS in millimeters

BAR CODE PRODUCT LABEL

A) Type of component
B) Manufacturing plant
C) SEL - selection code (bin):
 e.g.: EA = code for luminous intensity group
 4C = code for chromaticity coordinate
 1 = code for forward voltage
D) Date code year / week
E) Day code (e.g. 1: Monday)
F) Batch no.
G) Total quantity
H) Company code
Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.