DESCRIPTION

VEMT4700 is a high speed silicon NPN epitaxial planar phototransistor in a miniature PLCC-3 package for surface mounting on printed boards. The device is sensitive to visible and near infrared radiation.

FEATURES

- Package type: surface mount
- Package form: PLCC-3
- Dimensions (L x W x H in mm): 3.5 x 2.8 x 1.75
- High photo sensitivity
- High radiant sensitivity
- Suitable for visible and near infrared radiation
- Fast response times
- Angle of half sensitivity: $\varphi = \pm 60^\circ$
- Base terminal connected
- Package notch indicates collector
- Package matched with IR emitter series VSML3710
- Floor life: 168 h, MSL 3, acc. J-STD-020
- Lead (Pb)-free reflow soldering
- Compliant to RoHS directive 2002/95/EC and in accordance to WEEE 2002/96/EC

APPLICATIONS

- Photo interrupters
- Miniature switches
- Counters
- Encoders
- Position sensors
- Light sensors

PRODUCT SUMMARY

<table>
<thead>
<tr>
<th>COMPONENT</th>
<th>I_{ca} (mA)</th>
<th>φ (deg)</th>
<th>$\lambda_{0.1}$ (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VEMT4700</td>
<td>0.5</td>
<td>± 60</td>
<td>450 to 1080</td>
</tr>
</tbody>
</table>

Note

- Test conditions see table “Basic Characteristics”

ORDERING INFORMATION

<table>
<thead>
<tr>
<th>ORDERING CODE</th>
<th>PACKAGING</th>
<th>REMARKS</th>
<th>PACKAGE FORM</th>
</tr>
</thead>
<tbody>
<tr>
<td>VEMT4700-GS08</td>
<td>Tape and reel</td>
<td>MOQ: 7500 pcs, 1500 pcs/reel</td>
<td>PLCC-3</td>
</tr>
<tr>
<td>VEMT4700-GS18</td>
<td>Tape and reel</td>
<td>MOQ: 8000 pcs, 8000 pcs/reel</td>
<td>PLCC-3</td>
</tr>
</tbody>
</table>

Note

- MOQ: minimum order quantity

** Please see document “Vishay Material Category Policy”: www.vishay.com/doc?99902

Document Number: 81501 For technical questions, contact: detectortechsupport@vishay.com www.vishay.com Rev. 1.4, 14-Jul-10
VEMT4700
Vishay Semiconductors Silicon NPN Phototransistor

ABSOLUTE MAXIMUM RATINGS ($T_{\text{amb}} = 25^\circ \text{C}$, unless otherwise specified)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITION</th>
<th>SYMBOL</th>
<th>VALUE</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector emitter voltage</td>
<td></td>
<td>V_{CEO}</td>
<td>70</td>
<td>V</td>
</tr>
<tr>
<td>Emitter collector voltage</td>
<td></td>
<td>V_{ECO}</td>
<td>50</td>
<td>mA</td>
</tr>
<tr>
<td>Collector current</td>
<td></td>
<td>I_C</td>
<td>100</td>
<td>mA</td>
</tr>
<tr>
<td>Collector peak current</td>
<td>$t_p/T \leq 0.1$, $t_p \leq 10 \mu s$</td>
<td>I_{CM}</td>
<td>100</td>
<td>mA</td>
</tr>
<tr>
<td>Power dissipation</td>
<td></td>
<td>P_V</td>
<td>100</td>
<td>mW</td>
</tr>
<tr>
<td>Junction temperature</td>
<td></td>
<td>T_J</td>
<td>100</td>
<td>°C</td>
</tr>
<tr>
<td>Operating temperature range</td>
<td></td>
<td>T_{amb}</td>
<td>-40 to +100</td>
<td>°C</td>
</tr>
<tr>
<td>Storage temperature range</td>
<td></td>
<td>T_{stg}</td>
<td>-40 to +100</td>
<td>°C</td>
</tr>
<tr>
<td>Soldering temperature</td>
<td>Acc. reflow solder profile fig. 10</td>
<td>T_{sd}</td>
<td>260</td>
<td>°C</td>
</tr>
<tr>
<td>Thermal resistance junction/ambient</td>
<td>Soldered on PCB with pad dimensions: 4 mm x 4 mm</td>
<td>$R_{\text{th}J\text{A}}$</td>
<td>400</td>
<td>K/W</td>
</tr>
</tbody>
</table>

![Fig. 1 - Power Dissipation Limit vs. Ambient Temperature](image)

BASIC CHARACTERISTICS ($T_{\text{amb}} = 25^\circ \text{C}$, unless otherwise specified)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITION</th>
<th>SYMBOL</th>
<th>MIN.</th>
<th>TYP.</th>
<th>MAX.</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector emitter breakdown voltage</td>
<td>$I_C = 1 \text{ mA}$</td>
<td>V_{BRCEO}</td>
<td>70</td>
<td>120</td>
<td>200</td>
<td>V</td>
</tr>
<tr>
<td>Collector emitter dark current</td>
<td>$V_{\text{DE}} = 20 \text{ V}$, $E = 0$</td>
<td>I_{CEO}</td>
<td>1</td>
<td>200</td>
<td>0.5</td>
<td>mA</td>
</tr>
<tr>
<td>Collector emitter capacitance</td>
<td>$V_{\text{CE}} = 5 \text{ V}$, $f = 1 \text{ MHz}$, $E = 0$</td>
<td>C_{CEO}</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>pF</td>
</tr>
<tr>
<td>Collector light current</td>
<td>$E_e = 1 \text{ mW/cm}^2$, $\lambda = 950 \text{ nm}$, $V_{\text{CE}} = 5 \text{ V}$</td>
<td>I_{ca}</td>
<td>0.25</td>
<td>0.5</td>
<td>0.5</td>
<td>mA</td>
</tr>
<tr>
<td>Angle of half sensitivity</td>
<td></td>
<td>ϕ</td>
<td>±60</td>
<td>60</td>
<td>60</td>
<td>deg</td>
</tr>
<tr>
<td>Wavelength of peak sensitivity</td>
<td></td>
<td>λ_p</td>
<td>850</td>
<td>850</td>
<td>850</td>
<td>nm</td>
</tr>
<tr>
<td>Range of spectral bandwidth</td>
<td></td>
<td>$\lambda_{0.1}$</td>
<td>450</td>
<td>1080</td>
<td>1080</td>
<td>nm</td>
</tr>
<tr>
<td>Collector emitter saturation voltage</td>
<td>$E_e = 1 \text{ mW/cm}^2$, $\lambda = 950 \text{ nm}$, $I_{\text{C}} = 0.1 \text{ mA}$</td>
<td>V_{CEsat}</td>
<td>0.15</td>
<td>0.3</td>
<td>0.3</td>
<td>V</td>
</tr>
<tr>
<td>Rise time, fall time</td>
<td>$V_S = 5 \text{ V}$, $I_C = 1 \text{ mA}$, $\lambda = 950 \text{ nm}$, $R_L = 1 \text{ k} \Omega$</td>
<td>t_r/t_f</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>μs</td>
</tr>
<tr>
<td>Cut-off frequency</td>
<td>$V_S = 5 \text{ V}$, $I_C = 1 \text{ mA}$, $\lambda = 950 \text{ nm}$, $R_L = 100 \text{ Ω}$</td>
<td>f_c</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>kHz</td>
</tr>
</tbody>
</table>
VEMT4700
Silicon NPN Phototransistor
Vishay Semiconductors

BASIC CHARACTERISTICS (T_{amb} = 25 °C, unless otherwise specified)

Fig. 2 - Collector Dark Current vs. Ambient Temperature

![Collector Dark Current vs. Ambient Temperature](image)

Fig. 3 - Relative Collector Current vs. Ambient Temperature

![Relative Collector Current vs. Ambient Temperature](image)

Fig. 4 - Collector Light Current vs. Irradiance

![Collector Light Current vs. Irradiance](image)

Fig. 5 - Collector Light Current vs. Collector Emitter Voltage

![Collector Light Current vs. Collector Emitter Voltage](image)

Fig. 6 - Collector Emitter Capacitance vs. Collector Emitter Voltage

![Collector Emitter Capacitance vs. Collector Emitter Voltage](image)

Fig. 7 - Turn-on/Turn-off Time vs. Collector Current

![Turn-on/Turn-off Time vs. Collector Current](image)
VEMT4700
Vishay Semiconductors Silicon NPN Phototransistor

Fig. 8 - Relative Spectral Sensitivity vs. Wavelength

Fig. 9 - Relative Radiant Sensitivity vs. Angular Displacement

PACKAGE DIMENSIONS in millimeters

Mounting Pad Layout

Dimensions: IR and vaporphase (wave soldering)

Technical drawing according to IPC specifications.

Drawing-No.: 6.541-5070.01-4
Issue: 1 30.05.07

www.vishay.com For technical questions, contact: detectortechsupport@vishay.com Document Number: 81501
Rev. 1.4, 14-Jul-10
SOLDER PROFILE

Fig. 10 - Lead (Pb)-free Reflow Solder Profile acc. J-STD-020

DRYPACK

Devices are packed in moisture barrier bags (MBB) to prevent the products from moisture absorption during transportation and storage. Each bag contains a desiccant.

FLOOR LIFE

Floor life (time between soldering and removing from MBB) must not exceed the time indicated on MBB label:

- Floor life: 168 h
- Conditions: $T_{\text{amb}} < 30 \, ^\circ\text{C}$, RH < 60 %

DRYING

In case of moisture absorption devices should be baked before soldering. Conditions see J-STD-020 or label. Devices taped on reel dry using recommended conditions 192 h at 40 °C (+ 5 °C), RH < 5 %.

TAPE AND REEL

PLCC-3 components are packed in antistatic blister tape (DIN IEC (CO) 564) for automatic component insertion. Cavities of blister tape are covered with adhesive tape.

MISSING DEVICES

A maximum of 0.5 % of the total number of components per reel may be missing, exclusively missing components at the beginning and at the end of the reel. A maximum of three consecutive components may be missing, provided this gap is followed by six consecutive components.

Fig. 11 - Blister Tape

Fig. 12 - Tape Dimensions in mm for PLCC-3

Fig. 13 - Beginning and End of Reel

The tape leader is at least 160 mm and is followed by a carrier tape leader with at least 40 empty compartments. The tape leader may include the carrier tape as long as the cover tape is not connected to the carrier tape. The least component is followed by a carrier tape trailer with at least 75 empty compartments and sealed with cover tape.
COVER TAPE REMOVAL FORCE

The removal force lies between 0.1 N and 1.0 N at a removal speed of 5 mm/s. In order to prevent components from popping out of the blisters, the cover tape must be pulled off at an angle of 180° with regard to the feed direction.

Fig. 14 - Dimensions of Reel-GS08

Fig. 15 - Dimensions of Reel-GS18
Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay’s knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer’s responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer’s technical experts. Product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

© 2019 VISHAY INTERTECHNOLOGY, INC. ALL RIGHTS RESERVED