IR Sensor Module for Remote Control Systems

DESCRIPTION
The TSMP58138 is a miniaturized sensor for receiving the modulated signal of infrared remote control systems. A PIN diode and preamplifier are assembled on a lead frame, the epoxy package is designed as an IR filter. The modulated output signal, carrier out, can be used for repeater applications and code learning applications.

This component has not been qualified according to automotive specifications.

FEATURES
- Photo detector and preamplifier in one package
- AC coupled response from 30 kHz to 60 kHz, all data formats
- If the IR signal strength is more than 1000 mW/m² (distance less than 0.35 m with a typical IR remote control), the frequency range is limited to 55 kHz
- Improved shielding against electrical field disturbance
- AGC to suppress ambient noise
- High sensitivity, long receiving range
- Supply voltage: 2.5 V to 5.5 V
- Carrier out signal for IR repeater applications
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

MECHANICAL DATA
Pinning:
1 = carrier OUT, 2 = GND, 3 = V_S

ORDERING CODE
TSMP58138 - 1500 pieces in bags

APPLICATION CIRCUIT
Recommended circuit for best sensitivity in repeater applications. It limits the output voltage swing V_OUT to about 0.7 V in order to avoid internal coupling.

1 μF

33 kΩ

3

V_S

1

OUT

GND

33 kΩ

Input

AGC

Band pass

Comparator

Control circuit

TSMPxxxx

1 μF

100 100 47 μF

680 680

3 Ω

0 V

GND

In case of a supply voltage of 3 V, use one IR emitter only

Supply voltage +3 V or +5 V

0 V

3 Ω

GND
PARTS TABLE

<table>
<thead>
<tr>
<th>Carrier frequency</th>
<th>38 kHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package</td>
<td>Minicast</td>
</tr>
<tr>
<td>Pinning</td>
<td>1 = carrier OUT, 2 = GND, 3 = V_S</td>
</tr>
<tr>
<td>Dimensions (mm)</td>
<td>5.0 W x 6.95 H x 4.8 D</td>
</tr>
<tr>
<td>Mounting</td>
<td>Leaded</td>
</tr>
<tr>
<td>Application</td>
<td>Repeater</td>
</tr>
</tbody>
</table>

ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITION</th>
<th>SYMBOL</th>
<th>VALUE</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage (pin 3)</td>
<td></td>
<td>VS</td>
<td>-0.3 to +6</td>
<td>V</td>
</tr>
<tr>
<td>Supply current (pin 3)</td>
<td></td>
<td>IS</td>
<td>5</td>
<td>mA</td>
</tr>
<tr>
<td>Output voltage (pin 1)</td>
<td></td>
<td>VO</td>
<td>-0.3 to 5.5</td>
<td>V</td>
</tr>
<tr>
<td>Voltage at output to supply</td>
<td></td>
<td>V_S - V_O</td>
<td>-0.3 to (V_S + 0.3)</td>
<td>V</td>
</tr>
<tr>
<td>Output current (pin 1)</td>
<td></td>
<td>IO</td>
<td>5</td>
<td>mA</td>
</tr>
<tr>
<td>Junction temperature</td>
<td></td>
<td>T_j</td>
<td>100</td>
<td>°C</td>
</tr>
<tr>
<td>Storage temperature range</td>
<td></td>
<td>T_stg</td>
<td>-25 to +85</td>
<td>°C</td>
</tr>
<tr>
<td>Operating temperature range</td>
<td></td>
<td>T_amb</td>
<td>-25 to +85</td>
<td>°C</td>
</tr>
<tr>
<td>Power consumption</td>
<td>T_amb ≤ 85 °C</td>
<td>P_tot</td>
<td>10</td>
<td>mW</td>
</tr>
<tr>
<td>Soldering temperature</td>
<td>t ≤ 10 s, 1 mm from case</td>
<td>T_sd</td>
<td>260</td>
<td>°C</td>
</tr>
</tbody>
</table>

Note

- Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect the device reliability.

ELECTRICAL AND OPTICAL CHARACTERISTICS (T_amb = 25 °C, unless otherwise specified)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITION</th>
<th>SYMBOL</th>
<th>MIN.</th>
<th>TYP.</th>
<th>MAX.</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply current (pin 3)</td>
<td>E_v = 0, V_S = 5 V</td>
<td>I_SSD</td>
<td>0.55</td>
<td>0.7</td>
<td>0.9</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>E_v = 40 klx, sunlight</td>
<td>I_SGH</td>
<td>-</td>
<td>0.8</td>
<td>-</td>
<td>mA</td>
</tr>
<tr>
<td>Supply voltage</td>
<td></td>
<td>V_S</td>
<td>2.5</td>
<td>-</td>
<td>5.5</td>
<td>V</td>
</tr>
<tr>
<td>Transmission distance</td>
<td></td>
<td>d</td>
<td>7</td>
<td>--</td>
<td>--</td>
<td>m</td>
</tr>
<tr>
<td>Output voltage low (pin 1)</td>
<td></td>
<td>V_OSL</td>
<td>-</td>
<td>-</td>
<td>100</td>
<td>mV</td>
</tr>
<tr>
<td>Minimum irradiance</td>
<td></td>
<td>E_e min.</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>mW/m²</td>
</tr>
<tr>
<td>Maximum irradiance</td>
<td></td>
<td>E_e max.</td>
<td>30</td>
<td>-</td>
<td>-</td>
<td>W/m²</td>
</tr>
<tr>
<td>Directivity</td>
<td></td>
<td>φ_1/2</td>
<td>-</td>
<td>± 45</td>
<td>-</td>
<td>deg</td>
</tr>
</tbody>
</table>
TYPICAL CHARACTERISTICS (T_{amb} = 25 ^\circ C, unless otherwise specified)

Fig. 1 - Output Function

Optical Test Signal:
IR diode TSAL6200, I_d = 0.35 A,
N = 15 carrier pulses per burst, f = 38 kHz,
burst repetition time: 3 ms

The number of carrier-out pulses might not be exactly the same as the number of carrier cycles in t_{pi} (input burst)

t_{pi} - burst length

Fig. 2 - Frequency Dependence of Sensitivity

$E_{e_{min}}$ - Detection Threshold (mW/m²)

$t_{pi} \geq 6$ carrier cycles is recommended for optimum function

t_{pi} - burst length

Fig. 3 - Relative Spectral Sensitivity vs. Wavelength

$S (\lambda)_{rel}$ - Relative Spectral Sensitivity

Fig. 4 - Horizontal Directivity

E_{e} - Detection Threshold (mW/m²)

t_{pi} - burst length

The number of carrier-out pulses might not be exactly the same as the number of carrier cycles in t_{pi} (input burst)

t_{pi} - burst length

Fig. 5 - Vertical Directivity

d_{rel} - Relative Transmission Distance

λ - Wavelength (nm)

The number of carrier-out pulses might not be exactly the same as the number of carrier cycles in t_{pi} (input burst)

t_{pi} - burst length

The number of carrier-out pulses might not be exactly the same as the number of carrier cycles in t_{pi} (input burst)
PACKAGE DIMENSIONS in millimeters

Drawing-No.: 6.550-5263.01-4
Issue: 12; 16.04.10
19009

Marking area

technical drawings according to DIN specifications

Not indicated to tolerances ± 0.2
Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay’s knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer’s responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer’s technical experts. Product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.