High Efficiency LED in Ø 5 mm Tinted Diffused Package

DESCRIPTION
The TLH.640. series was developed for standard applications like general indicating and lighting purposes. It is housed in a 5 mm tinted diffused plastic package. The wide viewing angle of these devices provides a high on-off contrast.
Several selection types with different luminous intensities are offered. All LEDs are categorized in luminous intensity groups. The green and yellow LEDs are categorized additionally in wavelength groups. That allows users to assemble LEDs with uniform appearance.

PRODUCT GROUP AND PACKAGE DATA
- Product group: LED
- Package: 5 mm
- Product series: standard
- Angle of half intensity: ± 30°

FEATURES
- Choice of three bright colors
- Standard T-1 ¾ package
- Small mechanical tolerances
- Suitable for DC and high peak current
- Wide viewing angle
- Luminous intensity categorized
- Yellow and green color categorized
- TLH.640. without stand-offs
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

APPLICATIONS
- Status lights
- Off / on indicator
- Background illumination
- Readout lights
- Maintenance lights
- Legend light

PARTS TABLE

<table>
<thead>
<tr>
<th>PART</th>
<th>COLOR</th>
<th>LUMINOUS INTENSITY (mcd) at IF (mA)</th>
<th>WAVELENGTH (nm) at IF (mA)</th>
<th>FORWARD VOLTAGE (V) at IF (mA)</th>
<th>TECHNOLOGY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>MIN. TYP. MAX.</td>
<td>MIN. TYP. MAX.</td>
<td>MIN. TYP. MAX.</td>
<td></td>
</tr>
<tr>
<td>TLHR6400</td>
<td>Red</td>
<td>1.6 10 - 10</td>
<td>612 - 630</td>
<td>10 - 2 3 20</td>
<td>GaAsP on GaP</td>
</tr>
<tr>
<td>TLHR6400-CS12Z</td>
<td>Red</td>
<td>1.6 10 - 10</td>
<td>612 - 630</td>
<td>10 - 2 3 20</td>
<td>GaAsP on GaP</td>
</tr>
<tr>
<td>TLHR6401</td>
<td>Red</td>
<td>4 12 - 10</td>
<td>612 - 630</td>
<td>10 - 2 3 20</td>
<td>GaAsP on GaP</td>
</tr>
<tr>
<td>TLHR6405</td>
<td>Red</td>
<td>6.3 14 - 10</td>
<td>612 - 630</td>
<td>10 - 2 3 20</td>
<td>GaAsP on GaP</td>
</tr>
<tr>
<td>TLHR6405-ASZ</td>
<td>Red</td>
<td>6.3 14 - 10</td>
<td>612 - 630</td>
<td>10 - 2 3 20</td>
<td>GaAsP on GaP</td>
</tr>
<tr>
<td>TLHY6400</td>
<td>Yellow</td>
<td>1.6 10 - 10</td>
<td>581 - 594</td>
<td>10 - 2.4 3 20</td>
<td>GaAsP on GaP</td>
</tr>
<tr>
<td>TLHY6400-CS12Z</td>
<td>Yellow</td>
<td>1.6 10 - 10</td>
<td>581 - 594</td>
<td>10 - 2.4 3 20</td>
<td>GaAsP on GaP</td>
</tr>
<tr>
<td>TLHY6400-MS12Z</td>
<td>Yellow</td>
<td>1.6 10 - 10</td>
<td>581 - 594</td>
<td>10 - 2.4 3 20</td>
<td>GaAsP on GaP</td>
</tr>
<tr>
<td>TLHY6401</td>
<td>Yellow</td>
<td>4 12 - 10</td>
<td>581 - 594</td>
<td>10 - 2.4 3 20</td>
<td>GaAsP on GaP</td>
</tr>
<tr>
<td>TLHY6405</td>
<td>Yellow</td>
<td>6.3 14 - 10</td>
<td>581 - 594</td>
<td>10 - 2.4 3 20</td>
<td>GaAsP on GaP</td>
</tr>
<tr>
<td>TLHY6405-ASZ</td>
<td>Yellow</td>
<td>6.3 14 - 10</td>
<td>581 - 594</td>
<td>10 - 2.4 3 20</td>
<td>GaAsP on GaP</td>
</tr>
<tr>
<td>TLHG6400</td>
<td>Green</td>
<td>1.6 10 - 10</td>
<td>562 - 575</td>
<td>10 - 2.4 3 20</td>
<td>GaP on GaP</td>
</tr>
<tr>
<td>TLHG6400-AS12Z</td>
<td>Green</td>
<td>1.6 10 - 10</td>
<td>562 - 575</td>
<td>10 - 2.4 3 20</td>
<td>GaP on GaP</td>
</tr>
<tr>
<td>TLHG6400-CS12Z</td>
<td>Green</td>
<td>1.6 10 - 10</td>
<td>562 - 575</td>
<td>10 - 2.4 3 20</td>
<td>GaP on GaP</td>
</tr>
<tr>
<td>TLHG6401</td>
<td>Green</td>
<td>4 12 - 10</td>
<td>562 - 575</td>
<td>10 - 2.4 3 20</td>
<td>GaP on GaP</td>
</tr>
<tr>
<td>TLHG6401-AS12Z</td>
<td>Green</td>
<td>4 12 - 10</td>
<td>562 - 575</td>
<td>10 - 2.4 3 20</td>
<td>GaP on GaP</td>
</tr>
<tr>
<td>TLHG6405</td>
<td>Green</td>
<td>6.3 15 - 10</td>
<td>562 - 575</td>
<td>10 - 2.4 3 20</td>
<td>GaP on GaP</td>
</tr>
<tr>
<td>TLHG6405-ASZ</td>
<td>Green</td>
<td>6.3 15 - 10</td>
<td>562 - 575</td>
<td>10 - 2.4 3 20</td>
<td>GaP on GaP</td>
</tr>
</tbody>
</table>
ABSOLUTE MAXIMUM RATINGS (\(T_{\text{amb}} = 25 \degree \text{C},\) unless otherwise specified)

TLHR640., TLHY640., TLHG640.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITION</th>
<th>SYMBOL</th>
<th>VALUE</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reverse voltage</td>
<td>(V_R)</td>
<td>6</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>DC forward current</td>
<td>(I_F)</td>
<td>30</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>Surge forward current</td>
<td>(I_{FSM})</td>
<td>1</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Power dissipation</td>
<td>(P_V)</td>
<td>100</td>
<td>mW</td>
<td></td>
</tr>
<tr>
<td>Junction temperature</td>
<td>(T_J)</td>
<td>100</td>
<td>\degree C</td>
<td></td>
</tr>
<tr>
<td>Operating temperature range</td>
<td>(T_{\text{amb}})</td>
<td>-40 to +100</td>
<td>\degree C</td>
<td></td>
</tr>
<tr>
<td>Storage temperature range</td>
<td>(T_{\text{stg}})</td>
<td>-55 to +100</td>
<td>\degree C</td>
<td></td>
</tr>
<tr>
<td>Soldering temperature</td>
<td>(t) \leq 5 s, 2 mm from body</td>
<td>(T_{\text{sd}})</td>
<td>260</td>
<td>\degree C</td>
</tr>
<tr>
<td>Thermal resistance junction-to-ambient</td>
<td></td>
<td></td>
<td>(R_{\text{thJA}})</td>
<td>350</td>
</tr>
</tbody>
</table>

OPTICAL AND ELECTRICAL CHARACTERISTICS (\(T_{\text{amb}} = 25 \degree \text{C},\) unless otherwise specified)

TLHR640., RED

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITION</th>
<th>PART</th>
<th>SYMBOL</th>
<th>MIN.</th>
<th>TYP.</th>
<th>MAX.</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Luminous intensity (1)</td>
<td>(I_F = 10 \text{ mA})</td>
<td>TLHR6400</td>
<td>(I_y)</td>
<td>1.6</td>
<td>10</td>
<td>-</td>
<td>mcд</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TLHR6401</td>
<td>(I_y)</td>
<td>4</td>
<td>12</td>
<td>-</td>
<td>mcд</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TLHR6405</td>
<td>(I_y)</td>
<td>6.3</td>
<td>14</td>
<td>-</td>
<td>mcд</td>
</tr>
<tr>
<td>Dominant wavelength</td>
<td>(I_F = 10 \text{ mA})</td>
<td>(\lambda_d)</td>
<td>612</td>
<td>-</td>
<td>630</td>
<td>nm</td>
<td></td>
</tr>
<tr>
<td>Peak wavelength</td>
<td>(I_F = 10 \text{ mA})</td>
<td>(\lambda_p)</td>
<td>-</td>
<td>-</td>
<td>635</td>
<td>nm</td>
<td></td>
</tr>
<tr>
<td>Angle of half intensity</td>
<td>(I_F = 10 \text{ mA})</td>
<td>(\phi)</td>
<td>-</td>
<td>-</td>
<td>± 30</td>
<td>°</td>
<td></td>
</tr>
<tr>
<td>Forward voltage</td>
<td>(I_F = 20 \text{ mA})</td>
<td>(V_F)</td>
<td>-</td>
<td>2</td>
<td>3</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Reverse voltage</td>
<td>(I_R = 10 \mu\text{A})</td>
<td>(V_R)</td>
<td>6</td>
<td>15</td>
<td>-</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Junction capacitance</td>
<td>(V_R = 0 \text{ V, } f = 1 \text{ MHz})</td>
<td>(C_J)</td>
<td>-</td>
<td>50</td>
<td>-</td>
<td>pF</td>
<td></td>
</tr>
</tbody>
</table>

Note

(1) In one packing unit \(I_{\text{min.}}/I_{\text{max.}} \leq 0.5\)

TLHY640., YELLOW

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITION</th>
<th>PART</th>
<th>SYMBOL</th>
<th>MIN.</th>
<th>TYP.</th>
<th>MAX.</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Luminous intensity (1)</td>
<td>(I_F = 10 \text{ mA})</td>
<td>TLHY6400</td>
<td>(I_y)</td>
<td>1.6</td>
<td>10</td>
<td>-</td>
<td>mcд</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TLHY6401</td>
<td>(I_y)</td>
<td>4</td>
<td>12</td>
<td>-</td>
<td>mcд</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TLHY6405</td>
<td>(I_y)</td>
<td>6.3</td>
<td>14</td>
<td>-</td>
<td>mcд</td>
</tr>
<tr>
<td>Dominant wavelength</td>
<td>(I_F = 10 \text{ mA})</td>
<td>(\lambda_d)</td>
<td>581</td>
<td>-</td>
<td>594</td>
<td>nm</td>
<td></td>
</tr>
<tr>
<td>Peak wavelength</td>
<td>(I_F = 10 \text{ mA})</td>
<td>(\lambda_p)</td>
<td>-</td>
<td>-</td>
<td>585</td>
<td>nm</td>
<td></td>
</tr>
<tr>
<td>Angle of half intensity</td>
<td>(I_F = 10 \text{ mA})</td>
<td>(\phi)</td>
<td>-</td>
<td>-</td>
<td>± 30</td>
<td>°</td>
<td></td>
</tr>
<tr>
<td>Forward voltage</td>
<td>(I_F = 20 \text{ mA})</td>
<td>(V_F)</td>
<td>-</td>
<td>2.4</td>
<td>3</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Reverse voltage</td>
<td>(I_R = 10 \mu\text{A})</td>
<td>(V_R)</td>
<td>6</td>
<td>15</td>
<td>-</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Junction capacitance</td>
<td>(V_R = 0 \text{ V, } f = 1 \text{ MHz})</td>
<td>(C_J)</td>
<td>-</td>
<td>50</td>
<td>-</td>
<td>pF</td>
<td></td>
</tr>
</tbody>
</table>

Note

(1) In one packing unit \(I_{\text{min.}}/I_{\text{max.}} \leq 0.5\)

TLHG640., GREEN

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITION</th>
<th>PART</th>
<th>SYMBOL</th>
<th>MIN.</th>
<th>TYP.</th>
<th>MAX.</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Luminous intensity (1)</td>
<td>(I_F = 10 \text{ mA})</td>
<td>TLHG6400</td>
<td>(I_y)</td>
<td>1.6</td>
<td>10</td>
<td>-</td>
<td>mcд</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TLHG6401</td>
<td>(I_y)</td>
<td>4</td>
<td>12</td>
<td>-</td>
<td>mcд</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TLHG6405</td>
<td>(I_y)</td>
<td>6.3</td>
<td>15</td>
<td>-</td>
<td>mcд</td>
</tr>
<tr>
<td>Dominant wavelength</td>
<td>(I_F = 10 \text{ mA})</td>
<td>(\lambda_d)</td>
<td>562</td>
<td>-</td>
<td>575</td>
<td>nm</td>
<td></td>
</tr>
<tr>
<td>Peak wavelength</td>
<td>(I_F = 10 \text{ mA})</td>
<td>(\lambda_p)</td>
<td>-</td>
<td>-</td>
<td>565</td>
<td>nm</td>
<td></td>
</tr>
<tr>
<td>Angle of half intensity</td>
<td>(I_F = 10 \text{ mA})</td>
<td>(\phi)</td>
<td>-</td>
<td>-</td>
<td>± 30</td>
<td>°</td>
<td></td>
</tr>
<tr>
<td>Forward voltage</td>
<td>(I_F = 20 \text{ mA})</td>
<td>(V_F)</td>
<td>-</td>
<td>2.4</td>
<td>3</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Reverse voltage</td>
<td>(I_R = 10 \mu\text{A})</td>
<td>(V_R)</td>
<td>6</td>
<td>15</td>
<td>-</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Junction capacitance</td>
<td>(V_R = 0 \text{ V, } f = 1 \text{ MHz})</td>
<td>(C_J)</td>
<td>-</td>
<td>50</td>
<td>-</td>
<td>pF</td>
<td></td>
</tr>
</tbody>
</table>

Note

(1) In one packing unit \(I_{\text{min.}}/I_{\text{max.}} \leq 0.5\)
TYPICAL CHARACTERISTICS (T_{amb} = 25 \degree C, unless otherwise specified)

Fig. 1 - Forward Current vs. Ambient Temperature

Fig. 2 - Forward Current vs. Pulse Length

Fig. 3 - Relative Luminous Intensity vs. Angular Displacement

Fig. 4 - Forward Current vs. Forward Voltage

Fig. 5 - Relative Luminous Intensity vs. Ambient Temperature

Fig. 6 - Relative Luminous Intensity vs. Forward Current/Duty Cycle
Fig. 7 - Relative Luminous Intensity vs. Forward Current

Fig. 8 - Relative Intensity vs. Wavelength

Fig. 9 - Forward Current vs. Forward Voltage

Fig. 10 - Relative Luminous Intensity vs. Ambient Temperature

Fig. 11 - Relative Luminous Intensity vs. Forward Current/Duty Cycle

Fig. 12 - Relative Luminous Intensity vs. Forward Current
Fig. 13 - Relative Intensity vs. Wavelength

Fig. 14 - Forward Current vs. Forward Voltage

Fig. 15 - Relative Luminous Intensity vs. Ambient Temperature

Fig. 16 - Specific Luminous Intensity vs. Forward Current

Fig. 17 - Relative Luminous Intensity vs. Forward Current

Fig. 18 - Relative Intensity vs. Wavelength
PACKAGE DIMENSIONS in millimeters

Fig. 19 - Reel Dimensions

AS12 = cathode leaves tape first
AS21 = anode leaves tape first

6.544-5259.02-4
Issue: 8; 19.05.09
95 10917

Diodes: anode before cathode
Phototransistors: emitter before collector
Code 21

Diodes: cathode before anode
Phototransistors: collector before emitter
Code 12

This document is subject to change without notice. The products described herein and this document are subject to specific disclaimers, set forth at www.vishay.com/doc?91000
Note

- The new nomenclature for ammopack is e.g. ASZ only, without suffix for the LED orientation. The carton box has to be turned to the desired position: “+” for anode first, or “-” for cathode first. AS12Z and AS21Z are still valid for already existing types, BUT NOT FOR NEW DESIGN

TAPE DIMENSIONS in millimeters

<table>
<thead>
<tr>
<th>Option</th>
<th>Dim. “H” ± 0.5 mm</th>
<th>Dim. “X” ± 0.5 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS</td>
<td>17.3</td>
<td></td>
</tr>
<tr>
<td>BT</td>
<td>20.0</td>
<td>16.0</td>
</tr>
<tr>
<td>CS</td>
<td>22.0</td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>25.5</td>
<td></td>
</tr>
</tbody>
</table>
Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertecno, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay’s knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer’s responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer’s technical experts. Product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.