
Vishay Semiconductors

Universal LED, Ø 1.8 mm Tinted Diffused Miniplast Package

PRODUCT GROUP AND PACKAGE DATA

www.vishay.com

- Product group: LED
- Package: 1.8 mm (miniplast)
- · Product series: standard
- Angle of half intensity: ± 20°

FEATURES

- · For DC and pulse operation
- · Luminous intensity categorized
- · End-to-end stackable in centre-to-centre spacing of 0.1" (2.54 mm)
- Material categorization: For definitions of compliance please see www.vishay.com/doc?99912

APPLICATIONS

· General indicating and lighting purposes

RoHS COMPLIANT HALOGEN FREE <u>GREEN</u> (5-2008)

PARTS TABLE														
COLOR	<i>i</i>		at I _F (mA)					FORWARD VOLTAGE (V)		at I _F (mA)	TECHNOLOGY			
	MIN.	TYP.	MAX.		MIN.	TYP.	MAX.		MIN.	TYP.	MAX.			
Red	4	15	-	10	-	630	-	10	-	2	3	20	GaAsP on GaP	
Red	4	15	-	10	-	630	-	10	-	2	3	20	GaAsP on GaP	
Red	4	-	32	10	-	630	-	10	-	2	3	20	GaAsP on GaP	
Red	4	-	32	10	-	630	-	10	-	2	3	20	GaAsP on GaP	
	COLOR Red Red Red	COLOR MIN. Red 4 Red 4 Red 4	COLOR LUINCU INTENSIT (mcd) MIN. TYP. Red 4 15 Red 4 15 Red 4 -	Image: Line of the system Im	LUMINOUs INTENSIFy (mcd) at IF (mA) MIN. TYP. MAX. Red 4 15 - 10 Red 4 - 32 10	LUMINOUS INTENSITY (mcd) at IF (mA) WAY MIN. TYP. MAX. MIN. Red 4 15 - 10 - Red 4 15 - 10 - Red 4 - 32 10 -	LUTINOUS INTENSITY (mcd) at Is (mA) WAVELENG (mM) MIN. TYP. MAX. MIN. TYP. Red 4 15 - 10 - 630 Red 4 15 - 10 - 630 Red 4 - 32 10 - 630	LUMINOUS INTENSIFY (mcd)at IF (mAWAVELENGTH (mm)MIN.TYP.MAX.MIN.TYP.MAX.Red415-10-630-Red415-10-630-Red4-3210-630-	LUTINOUS INTENSITY (mcd) at IF (mA) WAVELENGTH (nm) at IF (mA) MIN. TYP. MAX. MIN. TYP. MAX. Red 4 15 - 10 - 630 - 10 Red 4 15 - 10 - 630 - 10 Red 4 - 32 10 - 630 - 10	LUMINOUs INTENSITY (mcd) at IF (mA) WAVELENGTH (nm) at IF (mA) fc V MIN. TYP. MAX. MIN. TYP. MAV. MIN. Red 4 15 - 10 - 630 - 10 - Red 4 15 - 10 - 630 - 10 - Red 4 - 32 10 - 630 - 10 -	LUTINOUS INTENSITY (mcd) at Is (mcd) WAVELENGTH (mM) at Is (mM) FORWAR VOLTAG (mM) MIN. TYP. MAX. MIN. TYP. MAX. MIN. TYP. MIN. TYP. Red 4 15 10 630 10 2 Red 4 32 10 630 10 2 Red 4 32 10 630 10 2	LUMINOUS INTENSITY (mcd)at IF (mA)VAUELENGTH (nm)at IF (mA)FORWARD VOLTAGE (N)MIN.TYP.MAX.MIN.TYP.MAX.MIN.TYP.MAX.Red415-10-630-10-23Red4-3210-630-10-23	LUMINOUS INTENSITYat Is at Is (mA)WAVELENGTH (nm)at Is mat Isat Is mat IsRed415-10-630-10-2320Red4-3210-630-10-2320	

ABSOLUTE MAXIMUM RATINGS (Tamb = 25 °C, unless otherwise specified) TI UR2400, TI UR2401

1LUR2400, 1LUR2401				
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT
Reverse voltage		V _R	6	V
DC forward current		I _F	20	mA
Surge forward current	$t_p \le 10 \ \mu s$	I _{FSM}	0.5	А
Power dissipation	$T_{amb} \le 55 \ ^{\circ}C$	Pv	60	mW
Junction temperature		Tj	100	°C
Operating temperature range		T _{amb}	- 40 to + 100	°C
Storage temperature range		T _{stg}	- 55 to + 100	°C
Soldoring tomporature	$t \leq 3$ s, 2 mm from body	T _{sd}	260	°C
Soldering temperature	$t \le 5$ s, 4 mm from body	T _{sd}	260	°C
Thermal resistance junction/ambient		R _{thJA}	450	K/W

TLUR2400, TLUR2401

www.vishay.com

Vishay Semiconductors

OPTICAL AND ELECTRICAL CHARACTERISTICS ($T_{amb} = 25$ °C, unless otherwise specified) TLUR2400, TLUR2401, RED								
PARAMETER	TEST CONDITION	PART	SYMBOL	MIN.	TYP.	MAX.	UNIT	
Luminous intensity (1)	$1 - 10 m^{10}$	TLUR2400	Ι _V	4	15		mcd	
Luminous intensity ⁽¹⁾	l _F = 10 mA	TLUR2401	Ι _V	4		32	mcd	
Dominant wavelength	I _F = 10 mA		λ _d		630		nm	
Peak wavelength	I _F = 10 mA		λ _p		640		nm	
Angle of half intensity	I _F = 10 mA		φ		± 20		deg	
Forward voltage	I _F = 20 mA		V _F		2	3	V	
Reverse voltage	I _R = 10 μA		V _R	6	15		V	
Junction capacitance	V _R = 0 V, f = 1 MHz		Cj		50		pF	

Note

 $^{(1)}~$ In one packing unit $I_{Vmin.}/I_{Vmax.} \leq 0.5$

LUMINOUS INTENSITY CLASSIFICATION					
GROUP	LIGHT INTENSITY (mcd)				
STANDARD	MIN.	MAX.			
Р	4	8			
Q	6.3	12.5			
R	10	20			
S	16	32			
Т	25	50			

Note

 Luminous intensity is tested at a current pulse duration of 25 ms. The above type numbers represent the order groups which include only a few brightness groups. Only one group will be shipped on each bag (there will be no mixing of two groups on each bag).

In order to ensure availability, single brightness groups will not be orderable.

In a similar manner for colors where wavelength groups are measured and binned, single wavelength groups will be shipped on any one bag.

In order to ensure availability, single wavelength groups will not be orderable.

TYPCIAL CHARACTERISTICS (T_{amb} = 25 °C, unless otherwise specified)

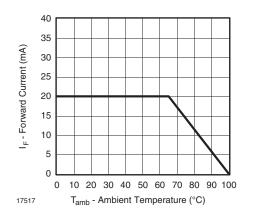


Fig. 1 - Forward Current vs. Ambient Temperature

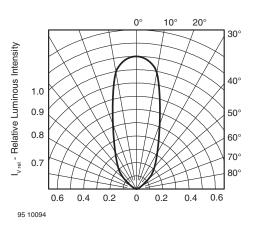


Fig. 2 - Relative Luminous Intensity vs. Angular Displacement

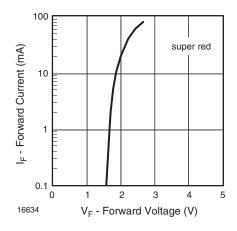


Fig. 3 - Forward Current vs. Forward Voltage

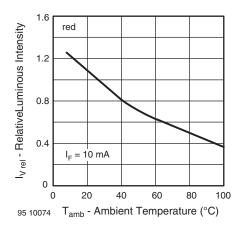


Fig. 4 - Relative Luminous Intensity vs. Ambient Temperature

PACKAGE DIMENSIONS in millimeters

Vishay Semiconductors

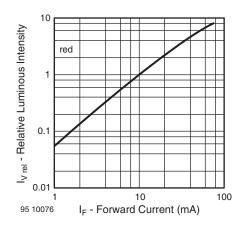


Fig. 5 - Relative Luminous Intensity vs. Forward Current

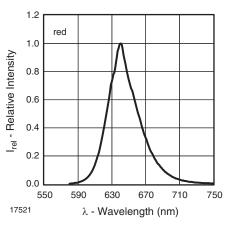
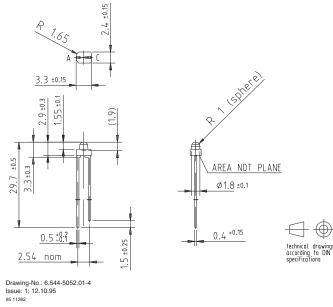



Fig. 6 - Relative Intensity vs. Wavelength

Rev. 1.5, 22-Apr-13

3 For technical questions, contact: <u>LED@vishay.com</u>

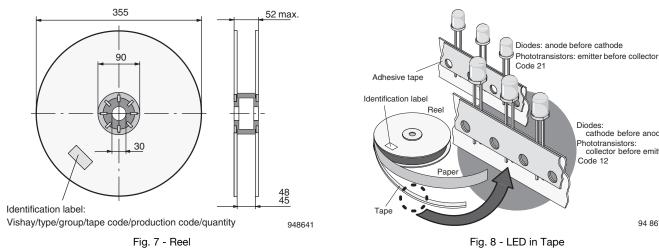
Document Number: 83288

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

TLUR2400, TLUR2401

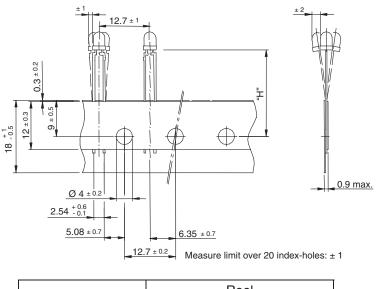
Vishay Semiconductors

Diodes:


Code 12

cathode before anode

94 8671


Phototransistors: collector before emitter

REEL DIMENSIONS in millimeters

TAPE

TAPE DIMENSIONS in millimeters

	Reel
Quantity per:	(Mat No. 1764)
	2000

94 8171

Option	Dim. "H" ± 0.5 mm		
AS	17.3		

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Vishay products are not designed for use in life-saving or life-sustaining applications or any application in which the failure of the Vishay product could result in personal injury or death unless specifically qualified in writing by Vishay. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

© 2025 VISHAY INTERTECHNOLOGY, INC. ALL RIGHTS RESERVED

Revision: 01-Jan-2025

1