

TCED1100

Vishay Semiconductors

Optocoupler, Photodarlington Output, High Gain

LINKS TO ADDITIONAL RESOURCES

DESCRIPTION

The TCED1100 consists of a phototransistor optically coupled to a gallium arsenide infrared-emitting diode in a 4-lead plastic dual inline package.

VDE STANDARDS

voltage ≤ 400 V_{RMS})

These couplers perform safety functions according to the following equipment standards:

- DIN EN 60747-5-5
 Optocoupler for electrical safety requirements
- IEC EN 60950
 Office machines (applied for reinforced isolation for mains
- VDE 0804

Telecommunication apparatus and data processing

• IEC60065

Safety for mains-operated electronic and related household apparatus

FEATURES

- Extra low coupling capacity typical 0.2 pF
- High common mode rejection
- Available in single or four channels
- Rated impulse voltage (transient overvoltage)
 V_{IOTM} = 10 kV_{peak}

- Isolation test voltage (partial discharge test voltage) V_{pd} = 1.67 kV_{peak}
- Rated isolation voltage (RMS includes DC) $V_{IORM} = 800 V_{peak}$
- Rated recurring peak voltage (repetitive)
 V_{IORM} = 890 V_P
- Thickness though insulation ≥ 0.4 mm
- Creepage current resistance according to VDE 0303/ IEC60112 comparative tracking index: CTI ≥ 175
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

AGENCY APPROVALS

- <u>UL</u>
- cUL
- DIN EN 60747-5-5 (VDE 0804)
- CQC GB4943.1
- CQC GB8898

ORDERING INFORMATION					
T C E D 1 PART NUMBER	1 0 0 #				
AGENCY CERTIFIED / PACKAGE	CTR (%)				
UL, cUL, VDE, CQC	600				
DIP-4	TCED1100				

TCED1100

www.vishay.com

Vishay Semiconductors

ABSOLUTE MAXIMUM RATINGS (T _{amb} = 25 °C, unless otherwise specified)									
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT					
INPUT									
Reverse voltage		V_{R}	6	V					
Forward current		I _F	60	mA					
Forward surge current	t _p ≤ 10 μs	I _{FSM}	1.5	Α					
Power dissipation		P _{diss}	70	mW					
Junction temperature		Tj	125	°C					
OUTPUT									
Collector emitter voltage		V_{CEO}	35	V					
Emitter collector voltage		V _{ECO}	7	V					
Collector current		Ic	80	mA					
Collector peak current	$t_p/T = 0.5, t_p \le 10 \text{ ms}$	I _{CM}	100	mA					
Power dissipation		P _{diss}	70	mW					
Junction temperature		Tj	125	°C					
COUPLER									
Isolation test voltage (RMS)	t = 1 min	V _{ISO}	4420	V_{RMS}					
Isolation voltage		V _{IORM}	890	V_{P}					
Total power dissipation		P _{tot}	200	mW					
Operating ambient temperature range		T _{amb}	-55 to +100	°C					
Storage temperature range		T _{stg}	-55 to +150	°C					
Soldering temperature (1)	2 mm from case, t ≤ 10 s	T _{sld}	260	°C					

Notes

- Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. Functional operation of the device is not
 implied at these or any other conditions in excess of those given in the operational sections of this document. Exposure to absolute
 maximum ratings for extended periods of the time can adversely affect reliability.
- (1) Refer to wave profile for soldering conditions for through hole devices

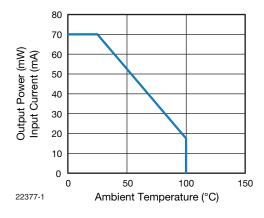


Fig. 1 - Abs. max. Power Dissipation (mW) Abs. max. Input Current (mA)

TCED1100

www.vishay.com

Vishay Semiconductors

ELECTRICAL CHARACTERISTICS (T _{amb} = 25 °C, unless otherwise specified)								
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT		
INPUT								
Forward voltage	I _F = 20 mA	V _F	-	1.15	1.4	V		
Junction capacitance	$V_R = 0 V, f = 1 MHz$	C _j	-	50	-	pF		
OUTPUT	OUTPUT							
Collector emitter voltage	$I_C = 1 \text{ mA}$	V _{CEO}	32	-	-	V		
Emitter collector voltage	I _E = 100 μA	V _{ECO}	7	-	-	V		
Collector ermitter cut-off current	$V_{CE} = 10 \text{ V}, I_F = 0, E = 0$	I _{CEO}	-	15	100	nA		
COUPLER								
Collector emitter saturation voltage	$I_F = 10 \text{ mA}, I_C = 5 \text{ mA}$	V _{CEsat}	-	-	1	V		
Cut-off frequency	V_{CE} = 5 V, I_F = 10 mA, R_L = 100 Ω	f _c	-	10	-	kHz		
Coupling capacitance	f = 1 MHz	C _k	-	0.6	-	pF		

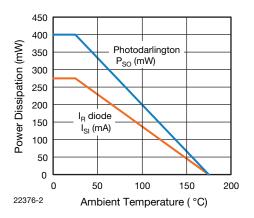
Note

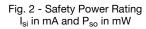
Minimum and maximum values are tested requirements. Typical values are characteristics of the device and are the result of engineering
evaluations. Typical values are for information only and are not part of the testing requirements.

CURRENT TRANSFER RATIO							
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT	
I _C /I _F	$V_{CE} = 2 \text{ V}, I_F = 1 \text{ mA}$	CTR	600	800	-	%	

MAXIMUM SAFETY RATINGS							
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT	
input							
Forward current		I _F	-	-	275	mA	
output							
Power dissipation		P _{diss}	-	-	400	mW	
Coupler							
Rated impulse voltage		V _{IOTM}	-	-	10	kV	
Safety temperature		T _{SI}	-	-	175	°C	
Safety output power		P _{SO}	-	-	400	mW	
Safety input current		I _{SI}	-	-	275	mA	

Note


According to DIN EN 60747-5-2 (see fig. 2). This optocoupler is suitable for safe electrical isolation only within the safety ratings. Compliance
with the safety ratings shall be ensured by means of suitable protective circuits.


INSULATION RATED PARAMETERS							
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT	
Partial discharge test voltage - routine test	100 %, t _{test} = 1 s	V_{pd}	1.67	-	-	kV _{peak}	
Partial discharge test voltage - lot test (sample test)	$t_{Tr} = 60 \text{ s}, t_{test} = 10 \text{ s},$	V_{IOTM}	10	-	-	kV _{peak}	
	(see fig. 2)	V_{pd}	1.42	-	-	kV _{peak}	
Insulation resistance	V _{IO} = 500 V	R _{IO}	10 ¹²	-	-	Ω	
	$V_{IO} = 500 \text{ V}, T_{amb} = 110 ^{\circ}\text{C}$	R _{IO}	10 ¹¹	-	-	Ω	
	V _{IO} = 500 V, T _{amb} = 175 °C (construction test only)	R _{IO}	10 ⁹	-	-	Ω	

Vishay Semiconductors

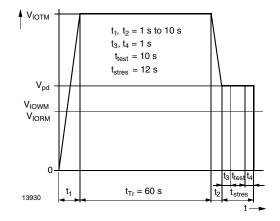


Fig. 3 - Test Pulse Diagram for Sample Test according to DIN EN 60747-5-2; IEC60747-5-5

SWITCHING CHARACTERISTICS						
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT
Rise time	V_{CC} = 2 V, I_C = 10 mA, R_L = 100 Ω , (see Fig. 3)	t _r	-	300	-	μs
Fall time	$V_{CC} = 2 \text{ V}, I_{C} = 10 \text{ mA}, R_{L} = 100 \Omega, (\text{see Fig. 3})$	t _f	-	250	-	μs

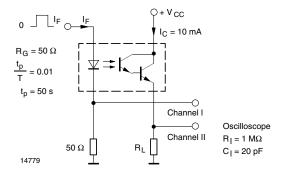


Fig. 4 - Test Circuit, Non-Saturated Operation

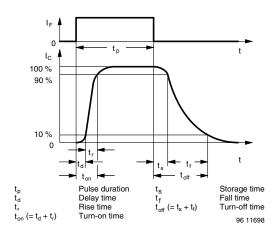


Fig. 5 - Switching Times

Vishay Semiconductors

TYPICAL CHARACTERISTICS (T_{amb} = 25 °C, unless otherwise specified)

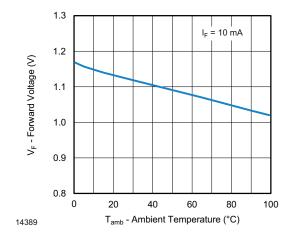


Fig. 6 - Forward Voltage vs. Ambient Temperature

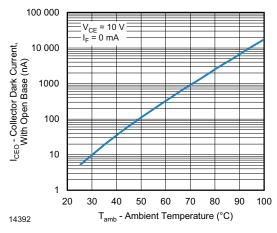


Fig. 9 - Collector Dark Current vs. Ambient Temperature

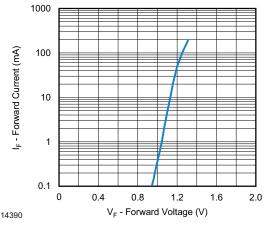


Fig. 7 - Forward Current vs. Forward Voltage

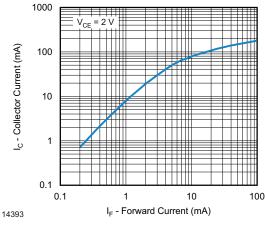


Fig. 10 - Collector Current vs. Forward Current

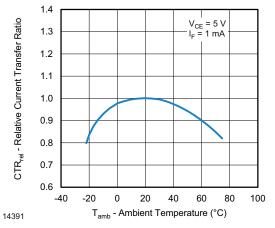


Fig. 8 - Relative Current Transfer Ratio vs. Ambient Temperature

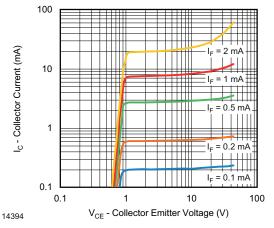
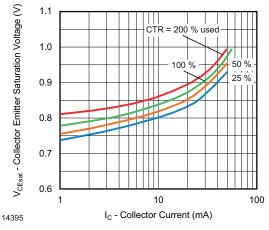
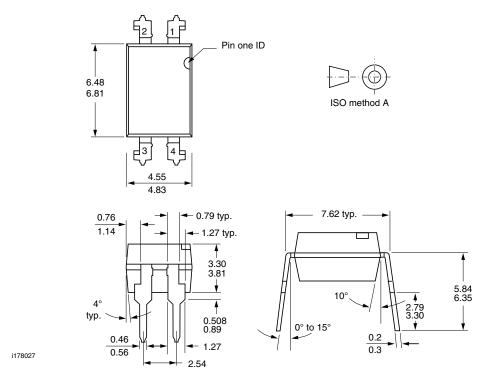



Fig. 11 - Collector Current vs. Collector Emitter Voltage

Vishay Semiconductors



10 000 (%) 1000 (%) 1000 (%) 1

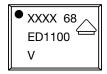

Fig. 12 - Collector Emitter Saturation Voltage vs. Collector Current

Fig. 13 - Current Transfer Ratio vs. Forward Current

PACKAGE DIMENSIONS in millimeters

PACKAGE MARKING (example)

Note

• XXXX = LMC (lot marking code)

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Vishay products are not designed for use in life-saving or life-sustaining applications or any application in which the failure of the Vishay product could result in personal injury or death unless specifically qualified in writing by Vishay. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.