VISHAY SEMICONDUCTORS

www.vishay.com

Optocouplers

Application Note 50

Designing Linear Amplifiers Using the IL300 Optocoupler

By Deniz Görk and Achim M. Kruck

INTRODUCTION

This application note presents isolation amplifier circuit designs useful in industrial test and measurement systems, instrumentation, and communication systems. It covers the IL300's coupling specifications, and circuit topologies for photovoltaic and photoconductive amplifier design. Specific designs include unipolar and bipolar responding amplifiers. Both single ended and differential amplifier configurations are discussed. Also included is a brief tutorial on the operation of photodetectors and their characteristics.

Galvanic isolation is desirable and often essential in many measurement systems. Applications requiring galvanic isolation include industrial sensors, medical transducers, and mains powered switchmode power supplies. Operator safety and signal quality are insured with isolated interconnections. These isolated interconnections commonly use isolation amplifiers.

Industrial sensors include thermocouples, strain gauges, and pressure transducers. They provide monitoring signals to a process control system. Their low level DC and AC signal must be accurately measured in the presence of high common-mode noise. The IL300's 130 dB common mode rejection (CMR), high gain stability \pm 0.005 %/°C (typ.) and \pm 0.01 % linearity provide a quality link from the sensor to the controller input.

The aforementioned applications require isolated signal processing. Current designs rely on A / D or V / F converters to provide input / output insulation and noise isolation. Such designs use transformers or high speed optocouplers which often result in complicated and costly solutions. The IL300 eliminates the complexity of these isolated amplifier designs without sacrificing accuracy or stability.

The IL300's 200 kHz bandwidth and gain stability make it an excellent candidate for subscriber and data phone interfaces. Present switch mode power supplies are approaching 1 MHz switching frequencies. Such supplies need output monitoring feedback networks with wide bandwidth and flat phase response. The IL300 satisfies these needs with simple support circuits.

OPERATION OF THE IL300

The IL300 consists of a high efficiency AlGaAs LED emitter coupled to two independent PIN photodiodes. The servo photodiode (pins 3, 4) provides a feedback signal which controls the current to the LED emitter (pins 1, 2). This photodiode provides a photocurrent, $I_{\rm P1}$, that is directly proportional to the LED's incident flux. This servo operation linearizes the LED's output flux and eliminates the LED's time and temperature dependancy. The galvanic isolation between the input and the output is provided by a second PIN photodiode (pins 5, 6) located on the output side of the coupler. The output current, $I_{\rm P2}$, from this photodiode accurately tracks the photocurrent generated by the servo photodiode.

Fig. 1 shows the package footprint and electrical schematic of the IL300. The following sections discuss the key operating characteristics of the IL300. The IL300 performance characteristics are specified with the photodiodes operating in the photoconductive mode.

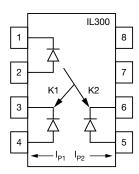


Fig. 1 - IL300 Schematic

APPLICATION NOT

SERVO GAIN - K1

The servo gain is defined as the ratio of the servo photocurrent, IP1, to the LED drive current, IF. It is called K1, and is described in equation 1.

$$K1 = I_{P1}/I_{F} \tag{1}$$

The IL300 is specified with an $I_F = 10$ mA, $T_A = 25$ °C, and $V_D = -15$ V. This condition generates a typical servo photocurrent of $I_{P1} = 120 \mu A$. This results in a typical K1 = 0.012.

The servo gain, K1, is guaranteed to be between 0.006 min. to 0.017 max. of an $I_F = 10$ mA, $T_A = 25$ °C, and $V_D = 15$ V.

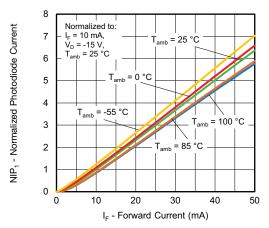


Fig. 2 - Normalized Photodiode Current vs. Forward Current

Fig. 2 presents the normalized servo photocurrent, NIP₁ (I_F, T_A), as a function of LED current and temperature. It can be used to determine the servo photocurrent, IP1, given LED current and ambient temperature.

The servo photocurrent under specific use conditions can be determined by using the typical value for I_{P1} (120 µA) and the normalization factor from Fig. 2. The example is to determine I_{P1} for the condition at $T_A = 85$ °C, and $I_F = 6$ mA.

$$I_{P1} = I_{P1, tvp} \times NI_{P1, tvp} (I_F, T_A)$$
 (2)

$$I_{P1} = 120 \,\mu\text{A} \times 0.5$$
 (3)

$$I_{P1} = 60 \ \mu A \tag{4}$$

The value I_{P1} is useful for determining the required LED current needed to servo the input stage of the isolation amplifier.

OUTPUT FORWARD GAIN - K2

Fig. 1 shows that the LED's optical flux is also received by a PIN photodiode located on the output side (pins 5, 6) of the coupler package. This detector is surrounded by an optically transparent high voltage insulation material. The coupler

construction spaces the LED 0.4 mm from the output PIN photodiode. The package construction and the insulation material quarantee the coupler to have a transient overvoltage of 8000 V peak.

K2, the output (forward) gain is defined as the ratio of the output photodiode current, IP2, to the LED current, IF. K2 is shown in equation 5.

$$K2 = I_{P2}/I_{F} \tag{5}$$

The forward gain, K2, has the same characteristics of the servo gain, K1. The normalized current and temperature performance of each detector is identical. This results from using matched PIN photodiodes in the IL300's construction.

TRANSFER GAIN - K3

The current gain, or CTR, of the standard phototransistor optocoupler is set by the LED efficiency, transistor gain, and optical coupling. Variation in ambient temperature alters the LED efficiency and phototransistor gain and results in CTR drift. Isolation amplifiers constructed with standard phototransistor optocouplers suffer from gain drift due to changing CTR.

Isolation amplifiers using the IL300 are not plagued with the drift problems associated with standard phototransistors. The following analysis will show how the servo operation of the IL300 eliminates the influence of LED efficiency on the amplifier gain.

The input / output gain of the IL300 is termed transfer gain, K3. Transfer gain is defined as the output (forward) gain, K2, divided by servo gain, K1, as shown in equation 6.

$$K3 = K2/K1 \tag{6}$$

The first step in the analysis is to review the simple optical servo feedback amplifier shown in Fig. 3.

The circuit consists of an operational amplifier, U1, a feedback resistor R1, and the input section of the IL300. The servo photodiode is operating in the photoconductive mode. The initial conditions are:

$$V_{a} = V_{b} = 0$$

Initially, a positive voltage is applied to the nonirritating input (Va) of the op amp. At that time the output of the op amp will swing toward the positive V_{cc} rail, and forward bias the LED. \rightarrow As the LED current, I_F, starts to flow, an optical flux will be generated. The optical flux will irradiate the servo photodiode causing it to generate a photocurrent, IP1. This photocurrent will flow through R1 and develop a positive voltage at the inverting input (V_b) of the op amp. The amplifier output will start to swing toward the negative supply rail, -V_{CC}. When the magnitude of the V_b is equal to that of Va, the LED drive current will cease to increase. This condition forces the circuit into a stable closed loop condition.

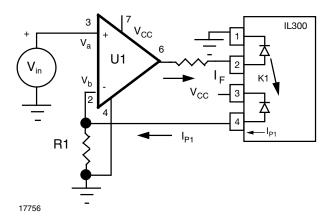


Fig. 3 - Optical Servo Amplifier

When V_{in} is modulated, V_b will track V_{in} . For this to happen the photocurrent through R1 must also track the change in V_a . Recall that the photocurrent results from the change in LED current times the servo gain, K1. The following equations can be written to describe this activity.

$$V_a = V_b = V_{in} = 0 (7)$$

$$I_{P1} = I_F \times K1 \tag{8}$$

$$V_b = I_{P1} \times R1 \tag{9}$$

The relationship of LED drive to input voltage is shown by combining equations 7, 8, and 9.

$$V_a = I_{P1} \times R1 \tag{10}$$

$$V_{in} = I_F \times K1 \times R1 \tag{11}$$

$$I_{F} = V_{in}/(K1 \times R1) \tag{12}$$

Equation 12 shows that the LED current is related to the input voltage V_{in} . A changing V_a causes a modulation in the LED flux. The LED flux will change to a level that generates the necessary servo photocurrent to stabilize the optical feedback loop. The LED flux will be a linear representation of the input voltage, V_a . The servo photodiode's linearity controls the linearity of the isolation amplifier.

The next step in the analysis is to evaluate the output trans resistance amplifier. The common inverting trans resistance amplifier is shown in Fig. 4. The output photodiode is operated in the photoconductive mode. The photocurrent, I_{P2} , is derived from the same LED that irradiates the servo photodetector. The output signal, V_{out} , is proportional to the output photocurrent, I_{P2} , times the trans resistance, R2.

$$V_{out} = -I_{P2} \times R2 \tag{13}$$

$$I_{P2} = K2 \times I_{F} \tag{14}$$

Combining equations 13 and 14 and solving for I_F is shown in equation 15.

$$I_{F} = -V_{out}/(K2 \times R2) \tag{15}$$

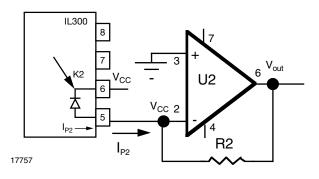


Fig. 4 - Optical Servo Amplifier

The input / output gain of the isolation amplifier is determined by combining equations 12 and 15.

$$I_{F} = V_{in}/(K1 \times R1) \tag{12}$$

$$I_{F} = -V_{out}/(K2 \times R2) \tag{15}$$

$$V_{in}/(K1 \times R1) = -V_{out}/(K2 \times R2)$$
 (16)

$$V_{out}/V_{in} = -(K2 \times R2)/(K1 \times R1)$$
 (17)

Note that the LED current, I_F , is factored out of equation 17. This is possible because the servo and output photodiode currents are generated by the same LED source. This equation can be simplified further by replacing the K2/K1 ratio with IL300's transfer gain, K3.

$$V_{out}/V_{in} = -K3 \times (R2/R1)$$
 (18)

The IL300 isolation amplifier gain stability and offset drift depends on the transfer gain characteristics. Fig. 5 shows the consistency of the normalized K3 as a function of LED current and ambient temperature. The transfer gain drift as a function of temperature is typically \pm 0.005 %/°C over a -55 °C to 100 °C range.

Fig. 6 shows the composite isolation amplifier including the input servo amplifier and the output trans resistance amplifier. This circuit offers the insulation of an optocoupler and the gain stability of a feedback amplifier.

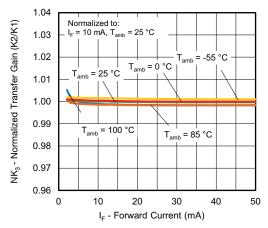


Fig. 5 - Normalized Transfer Gain vs. Forward Current

An instrumentation engineer often seeks to design an isolation amplifier with unity gain of $V_{out}/V_{in} = 1.0$. The IL300's transfer gain is targeted for: K3 = 1.0.

Package assembly variations result in a range of K3. Because of the importance of K3, Vishay offers the transfer gain sorted into \pm 6 % bins. The bin designator is listed on the IL300 package. The K3 bin limits are shown in table 1. This table is useful when selecting the specific resistor values needed to set the isolation amplifier transfer gain.

TABLE 1 - K3 TRANSFER GAIN BINS				
BIN	MIN.	MAX.		
D	0.765	0.859		
Е	0.851	0.955		
F	0.945	1.061		
G	1.051	1.181		

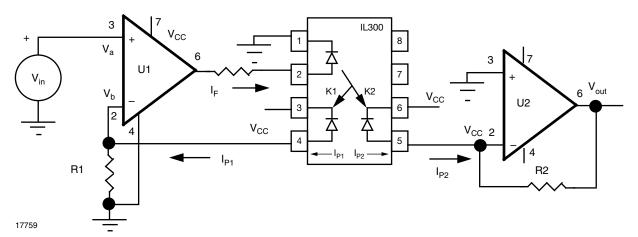


Fig. 6 - Composite Amplifier

ISOLATION AMPLIFIER DESIGN TECHNIQUES

The previous section discussed the operation of an isolation amplifier using the optical servo technique. The following section will describe the design philosophy used in developing isolation amplifiers optimized for input voltage range, linearity, and noise rejection.

The IL300 can be configured as either a photovoltaic or photoconductive isolation amplifier. The photovoltaic topology offers the best linearity, lowest noise, and drift performance. Isolation amplifiers using these circuit configurations meet or exceed 12 bit A / D performance. Photoconductive photodiode operation provides the largest coupled frequency bandwidth. The photoconductive configuration has linearity and drift characteristics comparable to a 8 to 9 bit A / D converter.

PHOTOVOLTAIC ISOLATION AMPLIFIER

The transfer characteristics of this amplifier are shown in Fig. 7.

The input stage consists of a servo amplifier, U1, which controls the LED drive current. The servo photodiode is operated with zero voltage bias. This is accomplished by connecting the photodiodes anode and cathode directly to U1's inverting and non-inverting inputs. The characteristics of the servo amplifier operation are presented in Fig. 7a and Fig. 7b. The servo photocurrent is linearly proportional to the input voltage, $I_{P1} = V_{in}/R1$. Fig. 7b shows the LED current is inversely proportional to the servo transfer gain, $I_F = I_{P1}/K1$. The servo photocurrent, resulting from the LED emission, keeps the voltage at the inverting input of U1 equal to zero. The output photocurrent, IP2, results from the incident flux supplied by the LED. Fig. 7c shows that the magnitude of the output current is determined by the output transfer gain, K2. The output voltage, as shown in Fig. 7d, is proportional to the output photocurrent IP2. The output voltage equals the product of the output photocurrent times the output amplifier's trans resistance, R2.

When low offset drift and greater than 12 bit linearity is desired, photovoltaic amplifier designs should be considered. The schematic of a typical positive unipolar photovoltaic isolation amplifier is shown in Fig. 8.

The composite amplifier transfer gain (V_o/V_{in}) is the ratio of two products. The first is the output transfer gain, K2 x R2.

The second is the servo transfer gain, K1 x R1. The amplifier gain is the first divided by the second. See equation 19.

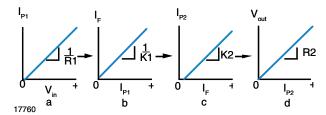


Fig. 7 - Positive Unipolar Photovoltaic Isolation Amplifier Transfer Characteristics

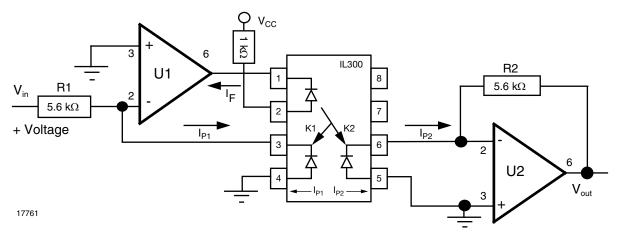


Fig. 8 - Positive Unipolar Photovoltaic Amplifier

$$\frac{V_{out}}{V_{in}} = \frac{K2 \times R2}{K1 \times R1} \tag{19}$$

Equation 19 shows that the composite amplifier transfer gain is independent of the LED forward current. The K2/K1 ratio reduces to IL300 transfer gain, K3. This relationship is included in equation 20. This equation shows that the composite amplifier gain is equal to the product of the IL300 gain, K3, times the ratio of the output to input resistors.

$$\frac{V_{\text{out}}}{V_{\text{in}}} = \frac{K3 \times R2}{R1} \tag{20}$$

Rev. 1.8, 11-Oct-2021

Designing this amplifier is a three step process. First, given the input signal span and U1's output current handling capability, the input resistor R1 can be determined by using the circuit found in Fig. 8 and the following typical characteristics:

U1
$$I_{out} = \pm 15 \text{ mA}$$

IL300 $K1 = 0.012$
 $K2 = 0.012$
 $K3 = 1.0$
 $V_{in} = 0 \ge + 1 \text{ V}$

5

The second step is to determine servo photocurrent, I_{P1}, resulting from the peak input signal swing. This current is the product of the LED drive current, IF, times the servo transfer gain, K1. For this example the $I_{\text{out}\,\text{max.}}$ is equal to the largest LED current signal swing, i.e., $I_F = I_{out max.}$

 $I_{P1} = K1 \times I_{out max.}$ $I_{P1} = 0.012 \times 15 \text{ mA}$

 $I_{P1} = 180 \, \mu A$

The input resistor, R1, is set by the input voltage range and the peak servo photocurrent, IP1.

Thus R1 is equal to:

 $R1 = V_{in}/I_{P1}$ $R1 = 1 V/180 \mu A$ $R1 = 5.6 k\Omega$

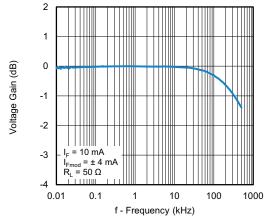


Fig. 9 - Voltage Gain vs. Frequency

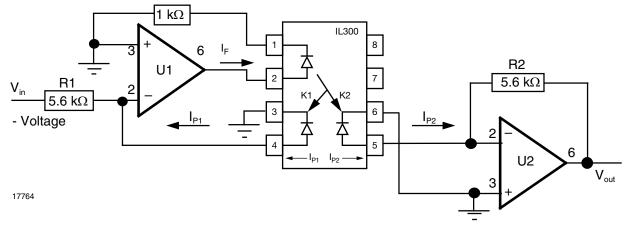


Fig. 10 - Negative Unipolar Photovoltaic Isolation Amplifier

The third step in this design is determining the value of the trans resistance, R2, of the output amplifier. R2 is set by the composite voltage gain desired, and the IL300's transfer gain, K3. Given K3 = 1.0 and a required $V_{out}/V_{in} = G = 1.0$, the value of R2 can be determined.

 $R2 = (R1 \times G)/K3$

 $R2 = (5.6 k\Omega \times 1.0)/1.0$

 $R2 = 5.6 k\Omega$

When the amplifier in Fig. 8 is constructed with OP-07 operational amplifiers it will have the frequency response shown in Fig. 9. This amplifier has a small signal bandwidth

The amplifier in Fig. 8 responds to positive polarity input signals. This circuit can be modified to respond to negative polarity signals.

The modifications of the input amplifier include reversing the polarity of the servo photodiode at U1's input and connecting the LED so that it sinks current from U1's output. The non inverting isolation amplifier response is maintained by reversing the IL300's output photodiodes connection to the input of the trans resistance amplifier. The modified circuit is shown in Fig. 10.

The negative unipolar photovoltaic isolation amplifier transfer characteristics are shown in Fig. 11. This amplifier, as shown in Fig. 10, responds to signals in only one quadrant. If a positive signal is applied to the input of this amplifier, it will forward bias the photodiode, causing U1 to reverse bias the LED. No damage will occur, and the > amplifier will be cut off under this condition. This operation is verified by the transfer characteristics shown in Fig. 11.

U

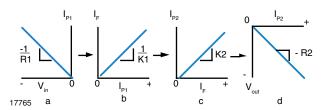


Fig. 11 - Negative Unipolar Photovoltaic Isolation Amplifier Transfer Characteristics

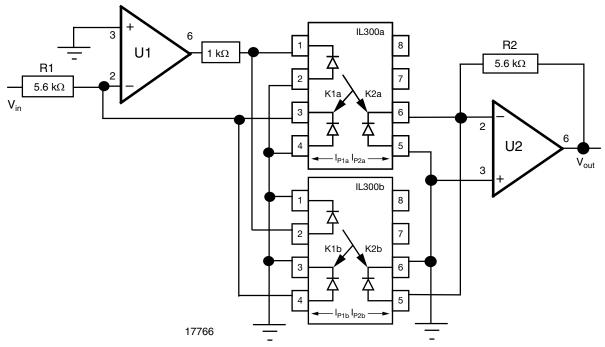


Fig. 12 - Bipolar Input Photovoltaic Isolation Amplifier

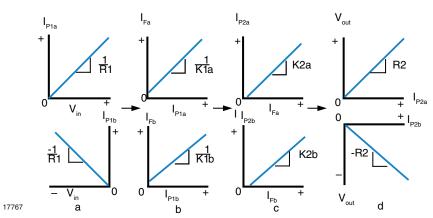


Fig. 13 - Bipolar Input Photovoltaic Isolation Amplifier Transfer Characteristics

A bipolar responding photovoltaic amplifier can be constructed by combining a positive and negative unipolar amplifier into one circuit. This is shown in Fig. 12. This amplifier uses two IL300s with each detector and LED connected in anti parallel. The IL300a responds to positive signals while the IL300b is active for the negative signals. The operation of the IL300s and the U1 and U2 is shown in the transfer characteristics given in Fig. 13.

The operational analysis of this amplifier is similar to the positive and negative unipolar isolation amplifier. This simple circuit provides a very low offset drift and exceedingly good linearity. The circuit's useful bandwidth is

limited by crossover distortion resulting from the photodiode stored charge. With a bipolar signal referenced to ground and using a 5 % distortion limit, the typical bandwidth is under 1 kHz. Using matched K3s, the composite amplifier gain for positive and negative voltage will be equal.

Whenever the need to couple bipolar signals arises a pre biased photovoltaic isolation amplifier is a good solution. By pre biasing the input amplifier the LED and photodetector will operate from a selected quiescent operating point. The relationship between the servo photocurrent and the input voltage is shown in Fig. 14.

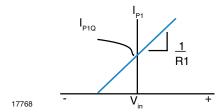


Fig. 14 - Transfer Characteristics Pre Biased Photovoltaic Bipolar Amplifier

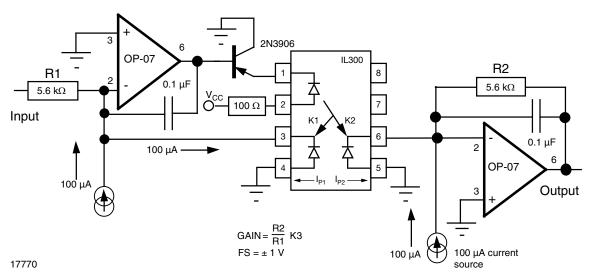


Fig. 15 - Pre Biased Photovoltaic Isolation Amplifier

The quiescent operation point, I_{P1}Q, is determined by the dynamic range of the input signal. This establishes maximum LED current requirements. The output current capability of the OP-07 is extended by including a buffer transistor between the output of U1 and the LED. The buffer transistor minimizes thermal drift by reducing the OP-07 internal power dissipation if it were to drive the LED directly. This is shown in Fig. 15. The bias is introduced into the inverting input of the servo amplifier, U1. The bias forces the LED to provide photocurrent, I_{P1}, to servo the input back to

a zero volt equilibrium. The bias source can be as simple as a series resistor connected to V_{CC} . Best stability and minimum offset drift is achieved when a good quality current source is used.

Fig. 17 shows the amplifier found in Fig. 15 including two modified Howland current sources. The first source pre biases the servo amplifier, and the second source is connected to U2's inverting input which matches the input pre bias.

➣

U

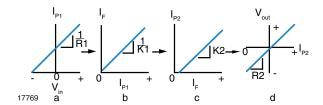


Fig. 16 - Pre Biased Photovoltaic Isolation Amplifier Transfer Characteristics

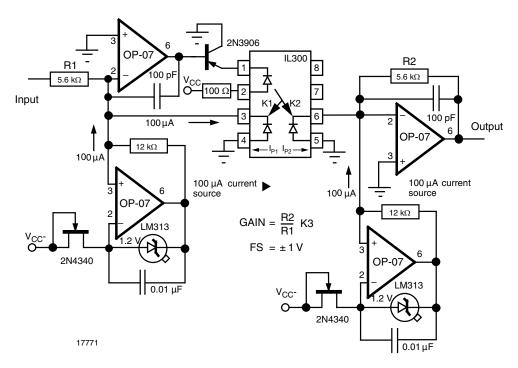


Fig. 17 - Pre Biased Photovoltaic Isolation Amplifier

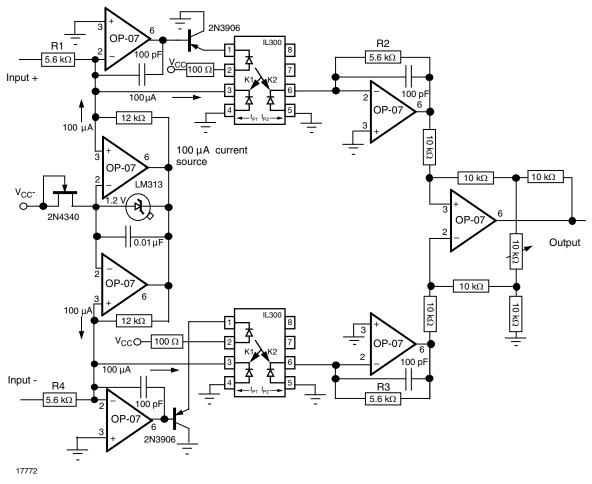


Fig. 18 - Differential Pre Biased Photovoltaic Isolation Amplifier

The previous circuit offers a DC/AC coupled bipolar isolation amplifier. The output will be zero volts for an input of zero volts. This circuit exhibits exceptional stability and linearity. This circuit has demonstrated compatibility with 12 bit A/D converter systems. The circuit's common mode rejection is determined by CMR of the IL300. When higher common mode rejection is desired one can consider the differential amplifier shown in Fig. 18.

This amplifier is more complex than the circuit shown in Fig. 17. The complexity adds a number of advantages. First the CMR of this isolation amplifier is the product of the IL300 and that of the summing differential amplifier found in the output section. Note also that the need for an offsetting bias source at the output is no longer needed. This is due to differential configuration of the two IL300 couplers. This amplifier is also compatible with instrumentation amplifier designs. It offers a bandwidth of 50 kHz and an extremely good CMR of 140 dB at 10 kHz.

PHOTOCONDUCTIVE ISOLATION AMPLIFIER

The photoconductive isolation amplifier operates the photodiodes with a reverse bias. The operation of the input network is covered in the discussion of K3 and as such will not be repeated here. The photoconductive isolation amplifier is recommended when maximum signal bandwidth is desired.

APPLICATION NOT

UNIPOLAR ISOLATION AMPLIFIER

The circuit shown in Fig. 19 is a unipolar photoconductive amplifier and responds to positive input signals. The gain of this amplifier follows the familiar form of $V_{out}/V_{in} = G = K3 \times (R2/R1)$. R1 sets the input signal range in conjunction with the servo gain and the maximum output current, I_o , which U1 can source. Given this, $I_{0max.} = I_{Fmax.}$. R1 can be determined from equation 21.

$$R1 = V_{\text{inmax}} / (K1 \times I_{0_{\text{max}}})$$
 (21)

The output section of the amplifier is a voltage follower. The output voltage is equal to the voltage created by the output photocurrent times the photodiode load resistor, R2. This resistor is used to set the composite gain of the amplifier as shown in equation 22.

$$R2 = (R1 \times G)/K3$$
 (22)

This amplifier is conditionally stable for given values of R1. As R1 is increased beyond 10 k Ω , it may become necessary to frequency compensate U1. This is done by placing a small capacitor from U1's output to its inverting input. This circuit uses a 741 op amp and will easily provide 100 kHz or greater bandwidth.

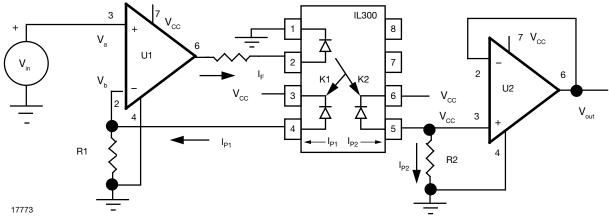


Fig. 19 - Unipolar Photoconductive Isolation Amplifier

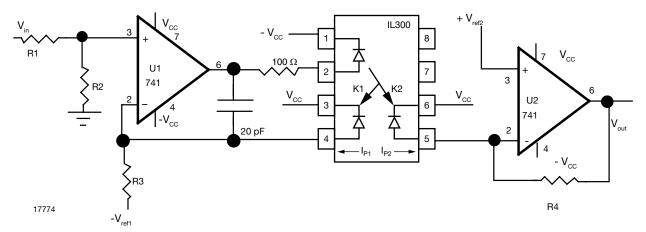


Fig. 20 - Bipolar Photoconductive Isolation Amplifier

BIPOLAR ISOLATION AMPLIFIER

Many applications require the isolation amplifier to respond to bipolar signals. The generic inverting isolation amplifier shown in Fig. 20 will satisfy this requirement. Bipolar signal operation is realized by pre biasing the servo loop. The pre bias signal, Vref1, is applied to the inverting input through R3. U1 forces sufficient LED current to generate a voltage across R3 which satisfies U1's differential input requirements. The output amplifier, U2, is biased as a trans resistance amplifier. The bias or offset, V_{ref2}, is provided to compensate for bias introduced in the servo amplifier.

Much like the unipolar amplifier, selecting R3 is the first step in the design. The specific resistor value is set by the input voltage range, reference voltage, and the maximum output current, lo, of the op amp. This resistor value also affects the bandwidth and stability of the servo amplifier.

The input network of R1 and R2 form a voltage divider. U2 is configured as a inverting amplifier. This bipolar photoconductive isolation amplifier has a transfer gain given in equation 23.

$$\frac{V_{out}}{V_{in}} = \frac{K3 \times R4 \times R2}{R3 \times (R1 + R2)}$$
 (23)

Equation 24 shows the relationship of the V_{ref1} to V_{ref2} .

$$V_{ref2} = (V_{ref1} \times R4)/R3 \tag{24}$$

Another bipolar photoconductive isolation amplifier is shown in Fig. 22. It is designed to accept an input signal of ± 1 V and uses inexpensive signal diodes as reference sources. The input signal is attenuated by 50 % by a voltage divider formed with R1 and R2. The solution for R3 is given in equation 25.

R3 =
$$(0.5 V_{inmax} + V_{ref1})/(I_F x K1)$$
 (25)

For this design R3 equals 30 k Ω . The output trans resistance is selected to satisfy the gain requirement of the composite isolation amplifier. With K3 = 1, and a goal of unity transfer gain, the value of R4 is determined by equation 26.

$$R4 = [R3 \times G \times (R1 + R2)]/(K3 \times R2)$$
 (26)
 $R4 = 60 \text{ k}\Omega$

From equation 24, V_{ref2} is shown to be twice V_{ref1}. V_{ref2} is easily generated by using two 1N914 diodes in series.

This amplifier is simple and relatively stable. When better output voltage temperature stability is desired, consider the isolation amplifier configuration shown in Fig. 23. This amplifier is very similar in circuit configuration except that the bias is provided by a high quality LM313 band gap reference source.

circuit forms а unity gain non-inverting photoconductive isolation amplifier. Along with the LM113 references and low offset OP-07 amplifiers the circuit replaces the 741 op amps. A 2N2222 buffer transistor is used to increase the OP-07's LED drive capability. The gain stability is set by K3, and the output offset is set by the stability of OP-07s and the reference sources.

Fig. 24 shows a novel circuit that minimizes much of the offset drift introduced by using two separate reference sources. This is accomplished by using an optically coupled tracking reference technique. The amplifier consists of two optically coupled signal paths. One IL300 couples the input to the output. The second IL300 couples a reference voltage generated on the output side to the input servo amplifier. This isolation amplifier uses dual op amps to minimize parts count. Fig. 24 shows the output reference being supplied by a voltage divider connected to V_{CC}. The offset drift can be reduced by using a band gap reference source to replace the voltage divider.

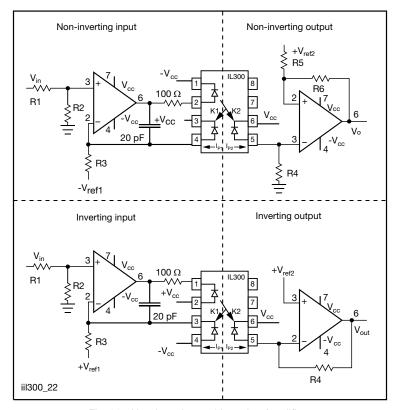


Fig. 21 - Non-Inverting and Inverting Amplifiers

OPTOLINEAR AMPLIFIERS					
AMPLIFIER	INPUT	OUTPUT	GAIN	OFFSET	
Non-inverting	Inverting	Inverting	$\frac{V_{OUT}}{V_{IN}} = \frac{K3 \times R4 \times R2}{R3 \times (R1 + R2)}$	$V_{ref2} = \frac{V_{ref1} \times R4 \times K3}{R3}$	
	Non-inverting	Non-inverting	$\frac{V_{OUT}}{V_{IN}} = \frac{K3 \times R4 \times R2 \times (R5 + R6)}{R3 \times R5 \times (R1 + R2)}$	$V_{\text{ref2}} = \frac{-V_{\text{ref1}} \times R4 \times (R5 + R6) \times K3}{R3 \times R6}$	
Inverting	Inverting	Non-inverting	$\frac{V_{OUT}}{V_{IN}} = \frac{-K3 \times R4 \times R2 \times (R5 + R6)}{R3 \times (R1 + R2)}$	$V_{ref2} = \frac{V_{ref1} \times R4 \times (R5 + R6) \times K3}{R3 \times R6}$	
	Non-inverting	Inverting	$\frac{V_{OUT}}{V_{IN}} = \frac{-K3 \times R4 \times R2}{R3 \times (R1 + R2)}$	$V_{ref2} = \frac{-V_{ref1} \times R4 \times K3}{R3}$	

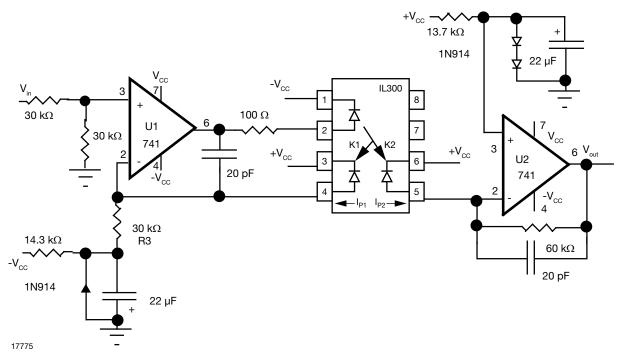


Fig. 22 - Bipolar Photoconductive Isolation Amplifier

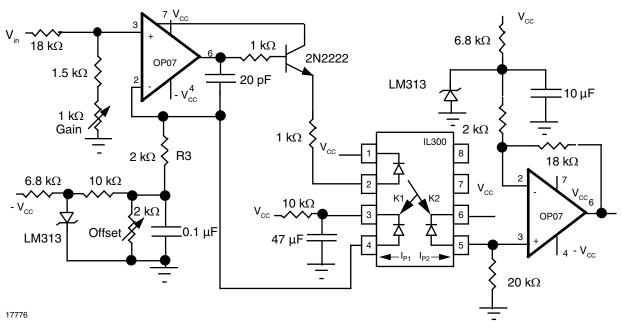


Fig. 23 - High Stability Bipolar Photoconductive Isolation Amplifier

For technical questions, contact: optocoupleranswers

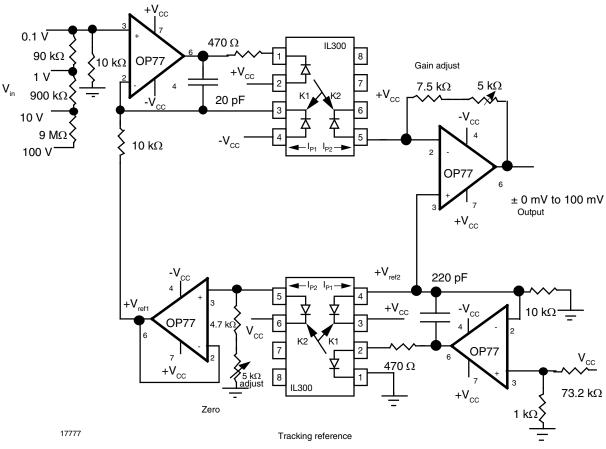


Fig. 24 - Bipolar Photoconductive Isolation Amplifier with Tracking Reference

One of the principal reasons to use an isolation amplifier is to reject electrical noise. The circuits presented thus far are of a single ended design. The common mode rejection, CMRR, of these circuits is set by the CMRR of the coupler and the bandwidth of the output amplifier. The typical common mode rejection for the IL300 is shown in Fig. 25.

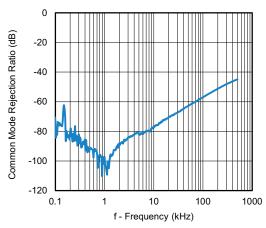


Fig. 25 - Common Mode Rejection

APPLICATION NO

The CMRR of the isolation amplifier can be greatly enhanced by using the CMRR of the output stage to its fullest extent. This is accomplished by using a differential amplifier at the output that combines optically coupled differential signals. The circuit shown in Fig. 26 illustrates the circuit.

Op amps U1 and U5 form a differential input network. U4 creates a 100 μ A, I_S, current sink which is shared by each of the servo amplifiers. This bias current is divided evenly between these two servo amplifiers when the input voltage is equal to zero. This division of current creates a differential signal at the output photodiodes of U2 and U6. The transfer gain, V_{out}/V_{in} , for this amplifier is given in equation 27.

$$\frac{V_{out}}{V_{in}} = \frac{R4 \times R2 \times K3(U5) + R3 \times R1 \times K3(U2)}{2 \times R1 \times R2}$$
(27)

The offset independent of the operational amplifiers is given in equation 28.

$$V_{offset} = \frac{Is \times [R1 \times R3 \times K3(U2) - R2 \times R4 \times K3(U5)]}{R1 + R2}$$
 (28)

Equation 29 shows that the resistors, when selected to produce equal differential gain, will minimize the offset voltage, $V_{offset}.$ Fig. 27 illustrates the voltage transfer characteristics of the prototype amplifier. The data indicates the offset at the output is -500 μV when using 1 k Ω 1 % registers



Fig. 26 - Differential Photoconductive Isolation Amplifier

PPLICATION NO

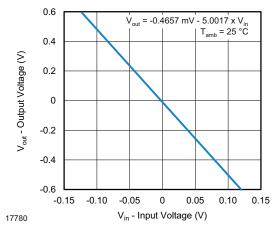


Fig. 27 - Differential Photoconductive Isolation Amplifier Transfer Characteristics

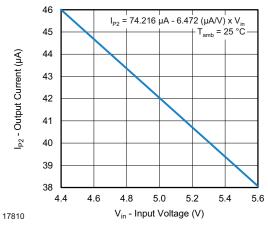


Fig. 28 - Transistor Unipolar Photoconductive Isolation Amplifier Transfer Characteristics

DISCRETE ISOLATION AMPLIFIER

A unipolar photoconductive isolation amplifier can be constructed using two discrete transistors. Fig. 30 shows such a circuit. The servo node, Va, sums the current from the photodiode and the input signal source. This control loop keeps Va constant. This amplifier was designed as a feedback control element for a DC power supply. The DC and AC transfer characteristics of this amplifier are shown in Fig. 28 and Fig. 29.

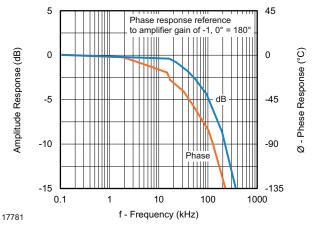


Fig. 29 - Transistor Unipolar Photoconductive Isolation Amplifier Frequency and Phase Response

CONCLUSION

The analog design engineer now has a new circuit element that will make the design of isolation amplifiers easier. The preceding circuits and analysis illustrate the variety of isolation amplifiers that can be designed. As a guide, when highest stability of gain and offset is needed, consider the photovoltaic amplifier. Widest bandwidth is achieved with the photoconductive amplifier. Lastly, the overall performance of the isolation amplifier is greatly influenced by the operational amplifier selected. Noise and drift are directly dependent on the servo amplifier. The IL300 also can be used in the digital environment. The pulse response of the IL300 is constant over time and temperature. In digital designs where LED degradation and pulse distortion can cause system failure, the IL300 will eliminate this failure mode.

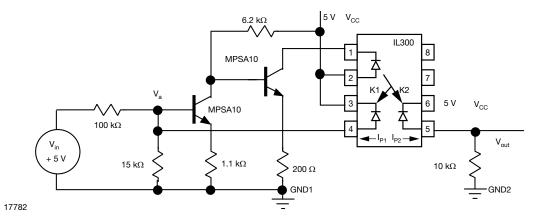


Fig. 30 - Unipolar Photoconductive Isolation Amplifier with Discrete Transistors

SUPPLEMENTAL INFORMATION

PHOTODETECTOR OPERATION TUTORIAL

PHOTODIODE OPERATION AND CHARACTERISTICS

The photodiodes in the IL300 are PIN (**P**-material - **I**ntrinsic material - **N**-material) diodes. These photodiodes convert the LED's incident optical flux into a photocurrent. The magnitude of the photocurrent is linearly proportional to the incident flux. The photocurrent is the product of the diode's responsivity, S_I, (A/W), the incident flux, E_e (W/mm²), and the detector area A_D (mm²). This relationship is shown below:

$$I_{p} = S_{l} \times E_{e} \times A \tag{1a}$$

PHOTODIODE I TO V CHARACTERISTICS

Reviewing the photodiode's current / voltage characteristics aids in understanding the operation of the photodiode, when connected to an external load. The I to V characteristics are shown in Fig. 31. The graph shows that the photodiode will generate photocurrent in either forward biased (photovoltaic) or reversed biased (photoconductive) mode.

In the forward biased mode the device functions as a photovoltaic, voltage generator. If the device is connected to a small resistance, corresponding to the vertical load line, the current output is linear with increases in incident flux. As $R_{\rm L}$ increases, operation becomes nonlinear until the open circuit (load line horizontal) condition is obtained. At this point the open circuit voltage is proportional to the logarithm of the incident flux.

In the reverse-biased (photoconductive) mode, the photodiode generates a current that is linearly proportional to the incident flux. Fig. 31 illustrates this point with the equally spaced current lines resulting from linear increase of $\mathsf{E}_{e}.$

The photocurrent is converted to a voltage by the load resistor R_L . Fig. 31 also shows that when the incident flux is zero (E = 0), a small leakage current or dark current (I_D) will flow.

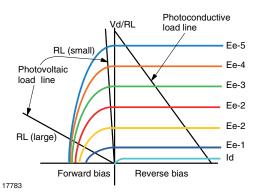


Fig. 31 - Photodiode I to V Characteristics

PHOTOVOLTAIC OPERATION

Photodiodes, operated in the photovoltaic mode, generate a load voltage determined by the load resistor, R_L , and the photocurrent, I_P . The equivalent circuit for the photovoltaic operation is shown in Fig. 32. The photodiode includes a current source (I_P), a shunt diode (D), a shunt resistor (R_P), a series resistor (R_S), and a parallel capacitor (C_P). The intrinsic region of the PIN diode offers a high shunt resistance resulting in a low dark current and reverse leakage current.

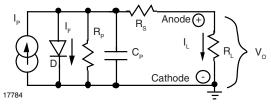


Fig. 32 - Equivalent Circuit - Photovoltaic Mode

Document Number: 83708 III

0

 \triangleright

TIO

Z

0

The output voltage, Vo, can be determined through nodal analysis. The circuit contains two nodes. The first node, V_F, includes the photocurrent generator, IP, the shunt diode, D, shunt resistor (RP), and parallel capacitance, CP. The second node, V_O, includes: the series resistor, R_S, and the load resistor, R_L. The diode, D, in the V_F node is responsible for the circuit's nonlinearity. The diode's current voltage relationship is given in equation 2a.

$$I_F = I_S x [EXP(V_F/K) - 1]$$
 (2a)

This graphical solution of 2a for the IL300 is shown in Fig. 33.

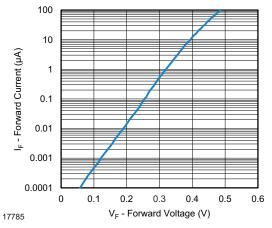


Fig. 33 - Photodiode Forward Voltage vs. Forward Current

Inserting the diode equation 2a into the two nodal equations gives the following DC solution for the photovoltaic operation (equation 3a):

$$0 = I_P - I_S x (\{EXP[V_O(R_S + R_L)/K x R_L] - 1\} - V_O[(R_S + R_L + R_P)/(R_P x R_L)])$$
(3a)

Typical IL300 values:

 $I_S = 13.94 \times 10^{-12}$

 $R_S = 50 \Omega$

 $R_P = 15 G\Omega$

K = 0.0288

By inspection, as R_L approaches zero ohms the diode voltage, V_F, also drops. This indicates a small diode current. All of the photocurrent will flow through the diode series resistor and the external load resistor. Equation 3a was solved with a computer program designed to deal with nonlinear transcendental equations. Fig. 34 illustrates the solution.

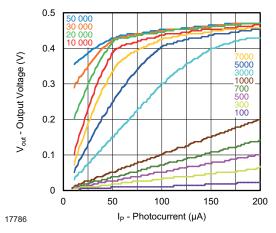


Fig. 34 - Photovoltaic Output vs. Load Resistance and Photocurrent

This curve shows a series of load lines and the output voltage, Vo, caused by the photocurrent. Optimum linearity is obtained when the load is zero ohms. Reasonable linearity is obtained with load resistors up to 1000 Ω . For load resistances greater than 1000 Ω , the output voltage will respond logarithmically to the photocurrent. This response is due to the nonlinear characteristics of the intrinsic diode, D. Photovoltaic operation with a zero ohm load resistor offers the best linearity and the lowest dark current, In. This operating mode also results in the lowest circuit noise. A zero load resistance can be created by connecting the photodiode between the inverting and non-inverting input of a trans resistance operational amplifier, as shown in Fig. 35.

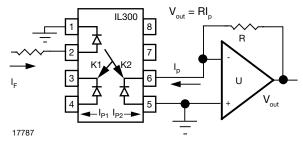


Fig. 35 - Photovoltaic Amplifier Configuration

PHOTOCONDUCTIVE OPERATION MODE

Isolation amplifier circuit architectures often load the photodiode with resistance greater than 0 Ω . With non-zero loads, the best linearity is obtained by using the photodiode in the photoconductive or reverse bias mode. Fig. 36 shows \geq the photodiode operating in the photoconductive mode. The output voltage, Vo, is the product of the photocurrent times Z the load resistor.

The reverse bias voltage causes a small leakage or dark current, I_D , to flow through the diode. The output photocurrent and the dark current, sum the load resistor. This is shown in equation 4a.

$$V_{L} = R_{L} x (I_{P} + I_{D})$$
 (4a)

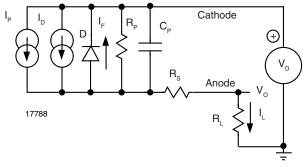


Fig. 36 - Photoconductive Photodiode Model

The dark current depends on the diode construction, reverse bias voltage and junction temperature. The dark current can double every 10 °C. The IL300 uses matched PIN photodiodes that offer extremely small dark currents, typically a few picoamperes. The dark current will usually track one another and their effect will cancel each other when a servo amplifier architecture is used. The typical dark current as a function of temperature and reverse voltage is shown in Fig. 37.

The responsivity, S, of the photodiode is influenced by the potential of the reverse bias voltage. Fig. 38 shows the responsivity percentage change versus bias voltage. This graph is normalized to the performance at a reverse bias of 15 V. The responsivity is reduced by 4 % when the bias is reduced to 5 V.

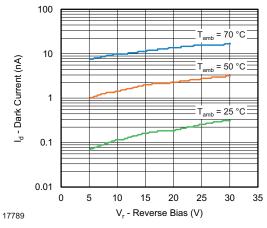


Fig. 37 - Dark Current vs. Reverse Bias

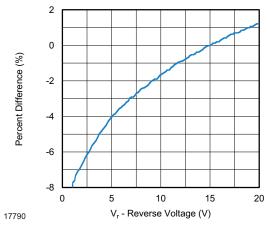


Fig. 38 - Photoconductive Responsivity vs. Bias Voltage

The photodiode operated in the photoconductive mode is easily connected to an operational amplifier. Fig. 39 shows the diode connected to a trans resistance amplifier. The transfer function of this circuit is given in equation 5a.

$$V_{out} = R \times (I_P + I_D)$$
 (5a)

BANDWIDTH CONSIDERATIONS

PIN photodiodes can respond very quickly to changes in incident flux. The IL300 detectors respond in tens of nanoseconds. The slew rate of the output current is related to the diodes junction capacitance, C_j , and the load resistor, R. The product of these two elements set the photo-response time constant.

$$\tau = R \times Cj \tag{6a}$$

This time constant can be minimized by reducing the load resistor, R, or the photodiode capacitance. This capacitance is reduced by depleting the photodiode's intrinsic region, I, by applying a reverse bias. Fig. 40 illustrates the effect of photodiode reverse bias on junction capacitance.

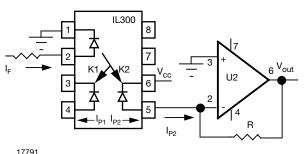


Fig. 39 - Photoconductive Amplifier

ICATION NO

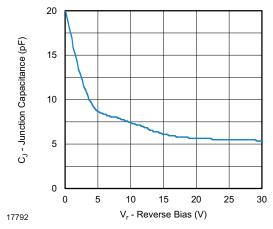


Fig. 40 - Photodiode Junction Capacitance vs. Reverse Voltage

The zero biased photovoltaic amplifier offers a 50 kHz to 60 kHz usable bandwidth. When the detector is reverse biased to -15 V, the typical isolation amplifier response increases to 100 kHz to 150 kHz. The phase and frequency response for the IL300 is presented in Fig. 41. When maximum system bandwidth is desired, the reverse biased photoconductive amplifier configuration should be considered.

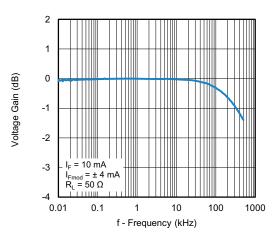


Fig. 41 - Voltage Gain vs. Frequency

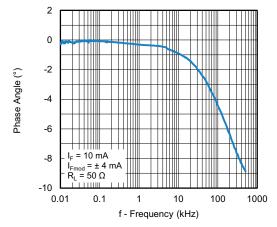


Fig. 42 - Phase Angle vs. Frequency