Optocoupler, Phototriac Output, Non-Zero Crossing,
1.5 kV/μs dV/dt, 600 V

DESCRIPTION

The VO3052 and VO3053 triac driver family consists of a GaAs infrared LED optically coupled to a monolithic photosensitive non-zero crossing triac detector chip. The 600 V blocking voltage permits control of off-line voltages up to 240 V_{AC}, with a safety factor or more than two, and is sufficient for as much as 380 V.

FEATURES

• 1500 V/μs dV/dt minimum 2000 V/μs typical
• 600 V blocking voltage
• 100 mA on-state current
• Low input trigger current
• 6 pin DIP package
• Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

APPLICATIONS

• Household appliances
• Triac drive / AC motor drives
• Solenoid / valve controls
• Office automation equipment / machine
• Temperature (HVAC) / lighting controls
• Switching power supply

AGENCY APPROVALS

• UL / cUL 1577
• DIN EN 60747-5-5 (VDE 0884) available with option 1

ORDERING INFORMATION

<table>
<thead>
<tr>
<th>AGENCY CERTIFIED / PACKAGE</th>
<th>TRIGGER, CURRENT I<sub>T</sub> (mA)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>UL, cUL</td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>10</td>
</tr>
</tbody>
</table>

Note

• Additional options may be possible, please contact sales office

For technical questions, contact: optocoupleranswers@vishay.com

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE, THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?99100
ABSOLUTE MAXIMUM RATINGS (\(T_{\text{amb}} = 25\, ^\circ\text{C}\), unless otherwise specified)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITION</th>
<th>SYMBOL</th>
<th>VALUE</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>INPUT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reverse voltage</td>
<td></td>
<td>(V_{\text{R}})</td>
<td>6</td>
<td>V</td>
</tr>
<tr>
<td>Forward current - continuous</td>
<td></td>
<td>(I_{\text{F}})</td>
<td>60</td>
<td>mA</td>
</tr>
<tr>
<td>Power dissipation</td>
<td></td>
<td>(P_{\text{diss}})</td>
<td>100</td>
<td>mW</td>
</tr>
<tr>
<td>OUTPUT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Off state output terminal voltage</td>
<td></td>
<td>(V_{\text{DRM}})</td>
<td>600</td>
<td>V</td>
</tr>
<tr>
<td>Peak non-repetitive surge current</td>
<td>PW = 100 ms, 120 pps</td>
<td>(I_{\text{TSM}})</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation</td>
<td></td>
<td>(P_{\text{diss}})</td>
<td>200</td>
<td>mW</td>
</tr>
<tr>
<td>On-state RMS current</td>
<td></td>
<td>(I_{\text{T(RMS)}})</td>
<td>100</td>
<td>mA</td>
</tr>
<tr>
<td>COUPLER</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total power dissipation</td>
<td></td>
<td>(P_{\text{tot}})</td>
<td>300</td>
<td>mW</td>
</tr>
<tr>
<td>Operating temperature</td>
<td></td>
<td>(T_{\text{amb}})</td>
<td>-55 to +100</td>
<td>°C</td>
</tr>
<tr>
<td>Storage temperature</td>
<td></td>
<td>(T_{\text{stg}})</td>
<td>-55 to +150</td>
<td>°C</td>
</tr>
<tr>
<td>Soldering temperature</td>
<td></td>
<td>(T_{\text{slid}})</td>
<td>260</td>
<td>°C</td>
</tr>
</tbody>
</table>

Note
- Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operational sections of this document. Exposure to absolute maximum ratings for extended periods of the time can adversely affect reliability.

THERMAL CHARACTERISTICS

- Maximum LED junction temperature: \(T_{\text{Jmax}}\) = 125 °C
- Maximum output die junction temperature: \(T_{\text{Jmax}}\) = 125 °C
- Thermal resistance, junction emitter to board: \(\theta_{\text{JEB}}\) = 150 °C/W
- Thermal resistance, junction emitter to case: \(\theta_{\text{JEC}}\) = 139 °C/W
- Thermal resistance, junction detector to board: \(\theta_{\text{JDB}}\) = 78 °C/W
- Thermal resistance, junction detector to case: \(\theta_{\text{JDC}}\) = 103 °C/W
- Thermal resistance, junction emitter to junction detector: \(\theta_{\text{JED}}\) = 496 °C/W
- Thermal resistance, case to ambient: \(\theta_{\text{CA}}\) = 3563 °C/W

Note
- The thermal model is represented in the thermal network below. Each resistance value given in this model can be used to calculate the temperatures at each node for a given operating condition. The thermal resistance from board to ambient will be dependent on the type of PCB, layout and thickness of copper traces. For a detailed explanation of the thermal model, please reference Vishay’s Thermal Characteristics of Optocouplers application note.
ELECTRICAL CHARACTERISTICS
\(T_{\text{amb}} = 25 \, ^\circ \text{C}, \text{unless otherwise specified} \)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITION</th>
<th>PART</th>
<th>SYMBOL</th>
<th>MIN.</th>
<th>TYP.</th>
<th>MAX.</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>INPUT</td>
<td>Reverse current</td>
<td>VO3052</td>
<td>(V_R = 6 , \text{V})</td>
<td>(I_R)</td>
<td>-</td>
<td>-</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Forward voltage</td>
<td>VO3052</td>
<td>(I_F = 30 , \text{mA})</td>
<td>(V_F)</td>
<td>-</td>
<td>1.2</td>
<td>1.5</td>
</tr>
<tr>
<td>OUTPUT</td>
<td>Leakage with LED off, either direction</td>
<td>VO3052</td>
<td>(V_{\text{DRM}} = 600 , \text{V})</td>
<td>(I_{\text{DRM}})</td>
<td>-</td>
<td>10</td>
<td>500</td>
</tr>
<tr>
<td></td>
<td>Critical rate of rise off-state voltage</td>
<td>VO3052</td>
<td>(V_{\text{O}} = 400 , \text{V})</td>
<td>(\text{dV/dt}_{\text{cr}})</td>
<td>1500</td>
<td>2000</td>
<td>-</td>
</tr>
</tbody>
</table>

Note
- Typical values are characteristics of the device and are the result of engineering evaluations. Typical values are for information only and are not part of the testing requirements

SAFETY AND INSULATION RATINGS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITION</th>
<th>SYMBOL</th>
<th>VALUE</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climatic classification</td>
<td>According to IEC 68 part 1</td>
<td></td>
<td>55 / 100 / 21</td>
<td></td>
</tr>
<tr>
<td>Pollution degree</td>
<td>According to DIN VDE 0109</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Comparative tracking index</td>
<td>Insulation group IIIa</td>
<td>CTI</td>
<td>175</td>
<td></td>
</tr>
<tr>
<td>Maximum rated withstanding isolation voltage</td>
<td>According to UL1577, (t = 1 , \text{min})</td>
<td>(V_{\text{ISO}})</td>
<td>4420</td>
<td>(V_{\text{RMS}})</td>
</tr>
<tr>
<td>Tested withstanding isolation voltage</td>
<td>According to UL1577, (t = 1 , \text{s})</td>
<td>(V_{\text{ISO}})</td>
<td>5300</td>
<td>(V_{\text{RMS}})</td>
</tr>
<tr>
<td>Maximum transient isolation voltage</td>
<td>According to DIN EN 60747-5-5</td>
<td>(V_{\text{OITM}})</td>
<td>8000</td>
<td>(V_{\text{peak}})</td>
</tr>
<tr>
<td>Maximum repetitive peak isolation voltage</td>
<td>According to DIN EN 60747-5-5</td>
<td>(V_{\text{ORM}})</td>
<td>890</td>
<td>(V_{\text{peak}})</td>
</tr>
<tr>
<td>Isolation resistance</td>
<td>(T_{\text{amb}} = 25 , ^\circ \text{C}, , V_{\text{IO}} = 500 , \text{V})</td>
<td>(R_{\text{IO}})</td>
<td>(\geq 10^{12})</td>
<td>(\Omega)</td>
</tr>
<tr>
<td></td>
<td>(T_{\text{amb}} = 100 , ^\circ \text{C}, , V_{\text{IO}} = 500 , \text{V})</td>
<td>(R_{\text{IO}})</td>
<td>(\geq 10^{11})</td>
<td>(\Omega)</td>
</tr>
<tr>
<td>Output safety power</td>
<td></td>
<td>(P_{\text{SO}})</td>
<td>500</td>
<td>(\text{mW})</td>
</tr>
<tr>
<td>Input safety current</td>
<td></td>
<td>(I_{\text{SI}})</td>
<td>250</td>
<td>(\text{mA})</td>
</tr>
<tr>
<td>Input safety temperature</td>
<td></td>
<td>(T_{\text{S}})</td>
<td>175</td>
<td>(^\circ \text{C})</td>
</tr>
<tr>
<td>Creepage distance</td>
<td>DIP-6, SMD-6 with option 7 and 9</td>
<td></td>
<td>(\geq 7)</td>
<td>mm</td>
</tr>
<tr>
<td>Clearance distance</td>
<td>DIP-6, 400 mil, option 6</td>
<td></td>
<td>(\geq 7)</td>
<td>mm</td>
</tr>
<tr>
<td>Creepage distance</td>
<td></td>
<td></td>
<td>(\geq 8)</td>
<td>mm</td>
</tr>
<tr>
<td>Clearance distance</td>
<td></td>
<td></td>
<td>(\geq 8)</td>
<td>mm</td>
</tr>
<tr>
<td>Insulation thickness</td>
<td></td>
<td>(\text{DTI})</td>
<td>(\geq 0.4)</td>
<td>mm</td>
</tr>
<tr>
<td>Input to output test voltage, method A</td>
<td>(V_{\text{ORM}} \times 1.6 = V_{\text{PR}}, , 100 , % , \text{sample test with } t_{\text{M}} = 10 , \text{s}, , \text{partial discharge } < 5 , \text{pC})</td>
<td>(V_{\text{PR}})</td>
<td>1669</td>
<td>(V_{\text{peak}})</td>
</tr>
</tbody>
</table>

Note
- As per IEC 60747-5-5, § 7.4.3.8.2, this optocoupler is suitable for “safe electrical insulation” only within the safety ratings. Compliance with the safety ratings shall be ensured by means of protective circuits.
TYPICAL CHARACTERISTICS
\(T_{\text{amb}} = 25 \, ^\circ\text{C}, \) unless otherwise specified

Fig. 1 - Forward Voltage vs. Forward Current

Fig. 2 - Off-State Leakage Current vs. Temperature

Fig. 3 - On-State Current vs. \(V_{\text{TM}} \)

Fig. 4 - Normalized Trigger Current vs. Temperature

Fig. 5 - Turn-on Time vs. LED Current

Fig. 6 - Normalized Holding Current vs. Temperature
PACKAGE DIMENSIONS (in millimeters)

DIP-6

- Pin one I.D.: 6.40 ± 0.30
- 7.62 typ.
- 6.40 ± 0.30
- 3.10 ± 0.50
- 7.62 typ.
- 3° to 9°
- 0.25 ± 0.10
- 3° to 9°
- 0.25 ± 0.10
- 1.27 ± 0.10
- 2.54 typ.
- 0.50 ± 0.10
- 0.85 ± 0.10
- 0.90 min.
- 8.60 ± 0.10
- 9.00 max.

Fig. 7 - Turn-on Time vs. Temperature

Fig. 8 - Trigger Current vs. Pulse Width
DIP-6, 400 mil, Option 6

SMD-6, Option 7
SMD-6, Option 9

PACKAGE MARKING (example of VO3052-X016)

Notes
- The VDE logo is only marked on option1 parts
- Tape and reel suffix (T) is not part of the package marking
PACKING INFORMATION (in millimeters)

Tube

![Diagram of Tube Specifications](image)

<table>
<thead>
<tr>
<th>DEVICES PER TUBS</th>
</tr>
</thead>
<tbody>
<tr>
<td>TYPE</td>
</tr>
<tr>
<td>DIP-6</td>
</tr>
</tbody>
</table>

DIP-6

![Diagram of DIP-6 Package](image)

Fig. 9 - Shipping Tube Specifications for DIP-6 Packages

Fig. 10 - Tube Shipping Medium
DIP-6, 400 mil, Option 6

Tape and Reel

SMD-6, Option 7

Fig. 11 - Tube Shipping Medium

Fig. 12 - Tape and Reel Shipping Medium

Fig. 13 - Tape and Reel Shipping Medium

Fig. 14 - Tape and Reel Packing (1000 pieces on Reel)
SOLDER PROFILES

Fig. 15 - Tape and Reel Shipping Medium

Fig. 16 - Wave Soldering Double Wave Profile According to J-STD-020 for DIP Devices

Fig. 17 - Lead (Pb)-free Reflow Solder Profile According to J-STD-020 for SMD Devices

HANDLING AND STORAGE CONDITIONS

ESD level: HBM class 2
Floor life: unlimited
Conditions: $T_{\text{amb}} < 30 \, ^\circ\text{C}$, RH < 85 %
Moisture sensitivity level 1, according to J-STD-020
Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay’s knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer’s responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer’s technical experts. Product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.