Tall Dome Dual Channel Transmissive Optical Sensor
with Phototransistor Outputs

DESCRIPTION

The TCUT1600X01 is a compact transmissive sensor that includes an infrared emitter and two phototransistor detectors, located face-to-face in a surface mount package. The tall dome design supports additional mechanical room for vertical signal encoding.

FEATURES

- Package type: surface mount
- Detector type: phototransistor
- Dimensions (L x W x H in mm): 5.5 x 4 x 5.7
- AEC-Q101 qualified
- Gap (in mm): 3
- Aperture (in mm): 0.3
- Channel distance (center to center): 0.8 mm
- Typical output current under test: I_C = 1.6 mA
- Emitter wavelength: 950 nm
- Lead (Pb)-free soldering released
- Moisture sensitivity level (MSL): 1
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

APPLICATIONS

- Automotive optical sensors
- Accurate position sensor for encoder
- Sensor for motion, speed, and direction
- Sensor for “turn and push” encoding

PRODUCT SUMMARY

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>GAP WIDTH (mm)</th>
<th>APERTURE WIDTH (mm)</th>
<th>TYPICAL OUTPUT CURRENT UNDER TEST (mA)</th>
<th>DAYLIGHT BLOCKING FILTER INTEGRATED</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCUT1600X01</td>
<td>3</td>
<td>0.3</td>
<td>1.6</td>
<td>No</td>
</tr>
</tbody>
</table>

Note

(1) Conditions like in table basic characteristics/coupler

ORDERING INFORMATION

<table>
<thead>
<tr>
<th>ORDERING CODE</th>
<th>PACKAGING</th>
<th>VOLUME (1)</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCUT1600X01</td>
<td>Tape and reel</td>
<td>MOQ: 1300 pcs, 1300 pcs/reel</td>
<td>Drypack, MSL 1</td>
</tr>
</tbody>
</table>

Note

(1) MOQ: minimum order quantity
ABSOLUTE MAXIMUM RATINGS *(T_{amb} = 25 °C, unless otherwise specified)*

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITION</th>
<th>SYMBOL</th>
<th>VALUE</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>COUPLER</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total power dissipation</td>
<td>T_{amb} ≤ 95 °C</td>
<td>P_{tot}</td>
<td>37.5</td>
<td>mW</td>
</tr>
<tr>
<td>Junction temperature</td>
<td></td>
<td>T_{j}</td>
<td>110</td>
<td>°C</td>
</tr>
<tr>
<td>Ambient temperature range</td>
<td></td>
<td>T_{amb}</td>
<td>-40 to +105</td>
<td>°C</td>
</tr>
<tr>
<td>Storage temperature range</td>
<td></td>
<td>T_{stg}</td>
<td>-40 to +125</td>
<td>°C</td>
</tr>
<tr>
<td>Soldering temperature</td>
<td>In accordance with fig. 16</td>
<td>T_{sd}</td>
<td>260</td>
<td>°C</td>
</tr>
<tr>
<td>INPUT (EMITTER)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reverse voltage</td>
<td></td>
<td>V_{R}</td>
<td>5</td>
<td>V</td>
</tr>
<tr>
<td>Forward current</td>
<td>T_{amb} ≤ 95 °C</td>
<td>I_{F}</td>
<td>25</td>
<td>mA</td>
</tr>
<tr>
<td>Forward surge current</td>
<td>t_{p} ≤ 10 μs</td>
<td>I_{FSM}</td>
<td>200</td>
<td>mA</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>T_{amb} ≤ 95 °C</td>
<td>P_{V}</td>
<td>37.5</td>
<td>mW</td>
</tr>
<tr>
<td>OUTPUT (DETECTOR)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collector emitter voltage</td>
<td></td>
<td>V_{CEO}</td>
<td>20</td>
<td>V</td>
</tr>
<tr>
<td>Emitter collector voltage</td>
<td></td>
<td>V_{ECO}</td>
<td>7</td>
<td>V</td>
</tr>
<tr>
<td>Collector current</td>
<td></td>
<td>I_{C}</td>
<td>20</td>
<td>mA</td>
</tr>
<tr>
<td>Collector dark current</td>
<td>T_{amb} = 85 °C, V_{CE} = 5 V</td>
<td>I_{CEO}</td>
<td>3.3</td>
<td>μA</td>
</tr>
</tbody>
</table>

ABSOLUTE MAXIMUM RATINGS

Fig. 1 - Power Dissipation Limit vs. Ambient Temperature

Fig. 2 - Forward Current Limit vs. Ambient Temperature
ELECTRICAL CHARACTERISTICS (T_{amb} = 25 °C, unless otherwise specified)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITION</th>
<th>SYMBOL</th>
<th>MIN.</th>
<th>TYP.</th>
<th>MAX.</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>COUPLER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collector current per channel</td>
<td>V<sub>CE</sub> = 5 V, I<sub>F</sub> = 15 mA</td>
<td>I<sub>C</sub></td>
<td>0.7</td>
<td>1.6</td>
<td>-</td>
<td>mA</td>
</tr>
<tr>
<td>Collector emitter saturation voltage</td>
<td>I<sub>F</sub> = 15 mA, I<sub>C</sub> = 0.2 mA</td>
<td>V<sub>CESat</sub></td>
<td>-</td>
<td>-</td>
<td>0.4</td>
<td>V</td>
</tr>
<tr>
<td>INPUT (EMITTER)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forward voltage</td>
<td>I<sub>F</sub> = 15 mA</td>
<td>V<sub>F</sub></td>
<td>1</td>
<td>1.2</td>
<td>1.4</td>
<td>V</td>
</tr>
<tr>
<td>Reverse current</td>
<td>V<sub>R</sub> = 5 V</td>
<td>I<sub>R</sub></td>
<td>-</td>
<td>-</td>
<td>10</td>
<td>μA</td>
</tr>
<tr>
<td>Junction capacitance</td>
<td>V<sub>R</sub> = 0 V, f = 1 MHz</td>
<td>C<sub>j</sub></td>
<td>-</td>
<td>25</td>
<td>-</td>
<td>pF</td>
</tr>
<tr>
<td>OUTPUT (DETECTOR)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collector emitter voltage I<sub>C</sub></td>
<td>I<sub>C</sub> = 1 mA</td>
<td>V<sub>CEO</sub></td>
<td>20</td>
<td>-</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td>Emitter collector voltage</td>
<td>I<sub>E</sub> = 100 μA</td>
<td>V<sub>ECEO</sub></td>
<td>7</td>
<td>-</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td>Collector dark current</td>
<td>V<sub>CE</sub> = 25 V, I<sub>F</sub> = 0 A, E = 0 lx</td>
<td>I<sub>CEO</sub></td>
<td>-</td>
<td>1</td>
<td>100</td>
<td>nA</td>
</tr>
</tbody>
</table>

SWITCHING CHARACTERISTICS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITION</th>
<th>SYMBOL</th>
<th>MIN.</th>
<th>TYP.</th>
<th>MAX.</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rise time</td>
<td>I<sub>C</sub> = 0.7 mA, V<sub>CE</sub> = 5 V, R<sub>L</sub> = 100 Ω (see fig. 3)</td>
<td>t<sub>r</sub></td>
<td>-</td>
<td>9</td>
<td>150</td>
<td>μs</td>
</tr>
<tr>
<td>Fall time</td>
<td>I<sub>C</sub> = 0.7 mA, V<sub>CE</sub> = 5 V, R<sub>L</sub> = 100 Ω (see fig. 3)</td>
<td>t<sub>f</sub></td>
<td>-</td>
<td>16</td>
<td>150</td>
<td>μs</td>
</tr>
</tbody>
</table>

BASIC CHARACTERISTICS (T_{amb} = 25 °C, unless otherwise specified)

- **Fig. 3** - Test Circuit for t_r and t_f
- **Fig. 4** - Switching Times
- **Fig. 5** - Forward Current vs. Forward Voltage
- **Fig. 6** - Forward Voltage vs. Ambient Temperature
Fig. 7 - Collector Current vs. Forward Current

Fig. 8 - Collector Current vs. Collector Emitter Voltage

Fig. 9 - Collector Emitter Saturation Voltage vs. Ambient Temperature

Fig. 10 - Collector Current vs. Ambient Temperature

Fig. 11 - Collector Dark Current vs. Ambient Temperature

Fig. 12 - Relative Collector Current vs. Horizontal Displacement
Fig. 13 - Relative Collector Current vs. Vertical Displacement

Fig. 14 - Rise/Fall Time vs. Collector Current

Fig. 15 - Application example

Fig. 16 - Lead (Pb)-free Reflow Solder Profile acc. J-STD-020

REFLOW SOLDER PROFILE

FLOOR LIFE

Level 1, acc. JEDEC®, J-STD-020. No time limit.
PACKAGE DIMENSIONS in millimeters

Technical drawings according to DIN specification.

Not indicated tolerances ± 0.15

Pin connection top view

Material cut-outs

Emitter side, wider contact for pin-identification

Optical axis

Injection gate location

Detector side

Proposed solderpad design

Ejector marks

Emitter side

Material cut-outs

Not indicated tolerances ± 0.15

Technical drawings according to DIN specification.

Pin connection top view

Material cut-outs

Emitter side, wider contact for pin-identification

Optical axis

Injection gate location

Detector side

Proposed solderpad design

Ejector marks

Emitter side

Material cut-outs

Not indicated tolerances ± 0.15

Technical drawings according to DIN specification.

Pin connection top view

Material cut-outs

Emitter side, wider contact for pin-identification

Optical axis

Injection gate location

Detector side

Proposed solderpad design

Ejector marks

Emitter side

Material cut-outs

Not indicated tolerances ± 0.15

Technical drawings according to DIN specification.

Pin connection top view

Material cut-outs

Emitter side, wider contact for pin-identification

Optical axis

Injection gate location

Detector side

Proposed solderpad design

Ejector marks

Emitter side

Material cut-outs

Not indicated tolerances ± 0.15

Technical drawings according to DIN specification.

Pin connection top view

Material cut-outs

Emitter side, wider contact for pin-identification

Optical axis

Injection gate location

Detector side

Proposed solderpad design

Ejector marks

Emitter side

Material cut-outs

Not indicated tolerances ± 0.15

Technical drawings according to DIN specification.

Pin connection top view

Material cut-outs

Emitter side, wider contact for pin-identification

Optical axis

Injection gate location

Detector side

Proposed solderpad design

Ejector marks

Emitter side

Material cut-outs

Not indicated tolerances ± 0.15

Technical drawings according to DIN specification.

Pin connection top view

Material cut-outs

Emitter side, wider contact for pin-identification

Optical axis

Injection gate location

Detector side

Proposed solderpad design

Ejector marks

Emitter side

Material cut-outs

Not indicated tolerances ± 0.15

Technical drawings according to DIN specification.

Pin connection top view

Material cut-outs

Emitter side, wider contact for pin-identification

Optical axis

Injection gate location

Detector side

Proposed solderpad design

Ejector marks

Emitter side

Material cut-outs

Not indicated tolerances ± 0.15

Technical drawings according to DIN specification.

Pin connection top view

Material cut-outs

Emitter side, wider contact for pin-identification

Optical axis

Injection gate location

Detector side

Proposed solderpad design

Ejector marks

Emitter side

Material cut-outs

Not indicated tolerances ± 0.15

Technical drawings according to DIN specification.

Pin connection top view

Material cut-outs

Emitter side, wider contact for pin-identification

Optical axis

Injection gate location

Detector side

Proposed solderpad design

Ejector marks

Emitter side

Material cut-outs

Not indicated tolerances ± 0.15

Technical drawings according to DIN specification.

Pin connection top view

Material cut-outs

Emitter side, wider contact for pin-identification

Optical axis

Injection gate location

Detector side

Proposed solderpad design

Ejector marks

Emitter side

Material cut-outs

Not indicated tolerances ± 0.15

Technical drawings according to DIN specification.

Pin connection top view

Material cut-outs

Emitter side, wider contact for pin-identification

Optical axis

Injection gate location

Detector side

Proposed solderpad design

Ejector marks

Emitter side

Material cut-outs

Not indicated tolerances ± 0.15

Technical drawings according to DIN specification.

Pin connection top view

Material cut-outs

Emitter side, wider contact for pin-identification

Optical axis

Injection gate location

Detector side

Proposed solderpad design

Ejector marks

Emitter side

Material cut-outs

Not indicated tolerances ± 0.15

Technical drawings according to DIN specification.

Pin connection top view

Material cut-outs

Emitter side, wider contact for pin-identification

Optical axis

Injection gate location

Detector side

Proposed solderpad design

Ejector marks

Emitter side

Material cut-outs

Not indicated tolerances ± 0.15

Technical drawings according to DIN specification.

Pin connection top view

Material cut-outs

Emitter side, wider contact for pin-identification

Optical axis

Injection gate location

Detector side

Proposed solderpad design

Ejector marks

Emitter side

Material cut-outs

Not indicated tolerances ± 0.15

Technical drawings according to DIN specification.

Pin connection top view

Material cut-outs

Emitter side, wider contact for pin-identification

Optical axis

Injection gate location

Detector side

Proposed solderpad design

Ejector marks

Emitter side

Material cut-outs

Not indicated tolerances ± 0.15

Technical drawings according to DIN specification.

Pin connection top view

Material cut-outs

Emitter side, wider contact for pin-identification

Optical axis

Injection gate location

Detector side

Proposed solderpad design

Ejector marks

Emitter side

Material cut-outs

Not indicated tolerances ± 0.15

Technical drawings according to DIN specification.

Pin connection top view

Material cut-outs

Emitter side, wider contact for pin-identification

Optical axis

Injection gate location

Detector side

Proposed solderpad design

Ejector marks

Emitter side

Material cut-outs

Not indicated tolerances ± 0.15

Technical drawings according to DIN specification.
Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay’s knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer’s responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer’s technical experts. Product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.