Dual 1 Form A Solid-State Relay (Normally Open)

DESCRIPTION

The VOR2121 is a 250 V dual channel normally open optically isolated solid-state relay (SPST - 1 form A). Based on hybrid architecture which allows fast switching times with a wide operating ambient temperature range. A high efficient GaAlAs IRED enables low forward current on the input side. On the output side high performance MOSFET switches provide a low R_{ON} and can switch both DC and AC signals.

FEATURES

- Isolation test voltage 5300 V_{RMS}
- Typical R_{ON} 12 Ω
- Load voltage 250 V
- Load current 200 mA / 140 mA
- Clean bounce free switching
- Low power consumption
- Wide temperature range

APPLICATIONS

- General telecom switching
- Metering
- Security equipment
- Instrumentation
- Industrial controls
- Battery management systems
- Automatic test equipment

AGENCY APPROVALS

- UL 1577
- cUL
- DIN EN 60747-5-5 (VDE 0884-5)

ORDERING INFORMATION

<table>
<thead>
<tr>
<th>PACKAGE</th>
<th>PART NUMBER</th>
<th>PACKAGE CONFIGURATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMD-8, tape and reel</td>
<td>VOR2121B8T</td>
<td>UL, cUL, VDE</td>
</tr>
<tr>
<td>SMD-8, tube</td>
<td>VOR2121B8</td>
<td></td>
</tr>
<tr>
<td>DIP-8, tube</td>
<td>VOR2121A8</td>
<td></td>
</tr>
</tbody>
</table>

For technical questions, contact: optocoupleranswers@vishay.com

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?79100
ABSOLUTE MAXIMUM RATINGS
(T_{amb} = 25 °C, unless otherwise specified)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>CONDITION</th>
<th>SYMBOL</th>
<th>VALUE</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>INPUT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IRED continuous forward current</td>
<td></td>
<td>I<sub>F</sub></td>
<td>50</td>
<td>mA</td>
</tr>
<tr>
<td>IRED reverse voltage</td>
<td></td>
<td>V<sub>R</sub></td>
<td>5</td>
<td>V</td>
</tr>
<tr>
<td>Input power dissipation</td>
<td></td>
<td>P<sub>diss</sub></td>
<td>80</td>
<td>mW</td>
</tr>
<tr>
<td>Junction temperature</td>
<td></td>
<td>T<sub>j</sub></td>
<td>125</td>
<td>°C</td>
</tr>
<tr>
<td>OUTPUT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DC or peak AC load voltage</td>
<td></td>
<td>V<sub>L</sub></td>
<td>250</td>
<td>V</td>
</tr>
<tr>
<td>Continuous DC load current at 25 °C, one channel</td>
<td></td>
<td>I<sub>L</sub></td>
<td>200</td>
<td>mA</td>
</tr>
<tr>
<td>Continuous DC load current at 25 °C, two channels</td>
<td></td>
<td>I<sub>L</sub></td>
<td>140</td>
<td>mA</td>
</tr>
<tr>
<td>SSR output power dissipation</td>
<td></td>
<td>P<sub>diss</sub></td>
<td>550</td>
<td>mW</td>
</tr>
<tr>
<td>Junction temperature</td>
<td></td>
<td>T<sub>j</sub></td>
<td>125</td>
<td>°C</td>
</tr>
<tr>
<td>SSR</td>
<td></td>
<td>T<sub>amb</sub></td>
<td>-40 to +100</td>
<td>°C</td>
</tr>
<tr>
<td>Storage temperature range</td>
<td></td>
<td>T<sub>stg</sub></td>
<td>-40 to +150</td>
<td>°C</td>
</tr>
<tr>
<td>Soldering temperature</td>
<td>t = 10 s max.</td>
<td>T<sub>sld</sub></td>
<td>260</td>
<td>°C</td>
</tr>
</tbody>
</table>

Note
- Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operational sections of this document. Exposure to absolute maximum ratings for extended periods of the time can adversely affect reliability.

ELECTRICAL CHARACTERISTICS
(T_{amb} = 25 °C, unless otherwise specified)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITION</th>
<th>SYMBOL</th>
<th>MIN.</th>
<th>TYP.</th>
<th>MAX.</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>INPUT</td>
<td>IRED forward current, switch turn-on</td>
<td>I<sub>on</sub></td>
<td>-</td>
<td>0.4</td>
<td>2</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>IRED forward current, switch turn-off</td>
<td>I<sub>off</sub></td>
<td>0.05</td>
<td>0.35</td>
<td>-</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>IRED reverse voltage</td>
<td>V<sub>F</sub></td>
<td>-</td>
<td>1.4</td>
<td>1.6</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>I<sub>R</sub></td>
<td>-</td>
<td>-</td>
<td>10</td>
<td>-</td>
<td>μA</td>
</tr>
<tr>
<td>OUTPUT</td>
<td>On-resistance</td>
<td>R<sub>ON</sub></td>
<td>-</td>
<td>12</td>
<td>15</td>
<td>Ω</td>
</tr>
<tr>
<td></td>
<td>Off-resistance</td>
<td>R<sub>OFF</sub></td>
<td>1.0</td>
<td>5000</td>
<td>-</td>
<td>GΩ</td>
</tr>
<tr>
<td></td>
<td>Off-state leakage current</td>
<td>I<sub>O</sub></td>
<td>-</td>
<td>< 1</td>
<td>100</td>
<td>nA</td>
</tr>
<tr>
<td></td>
<td>Output capacitance pin 3 to 4</td>
<td>C<sub>O</sub></td>
<td>-</td>
<td>39</td>
<td>-</td>
<td>pF</td>
</tr>
<tr>
<td></td>
<td>I<sub>F</sub> = 0 mA, V<sub>L</sub> = 1 V, 1 MHz</td>
<td></td>
<td>-</td>
<td>6</td>
<td>-</td>
<td>pF</td>
</tr>
<tr>
<td>TRANSFER</td>
<td>Capacitance (input to output)</td>
<td>V<sub>ID</sub> = 1 V</td>
<td>C<sub>ID</sub></td>
<td>-</td>
<td>0.4</td>
<td>-</td>
</tr>
</tbody>
</table>

Note
- Minimum and maximum values are testing requirements. Typical values are characteristics of the device and are the result of engineering evaluations. Typical values are for information only and are not part of the testing requirements.

SWITCHING CHARACTERISTICS
(T_{amb} = 25 °C, unless otherwise specified)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITION</th>
<th>SYMBOL</th>
<th>MIN.</th>
<th>TYP.</th>
<th>MAX.</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turn-on time</td>
<td>I<sub>F</sub> = 5 mA, I<sub>L</sub> = 50 mA</td>
<td>t<sub>on</sub></td>
<td>-</td>
<td>0.20</td>
<td>0.5</td>
<td>ms</td>
</tr>
<tr>
<td>Turn-off time</td>
<td>I<sub>F</sub> = 5 mA, I<sub>L</sub> = 50 mA</td>
<td>t<sub>off</sub></td>
<td>-</td>
<td>0.03</td>
<td>0.2</td>
<td>ms</td>
</tr>
</tbody>
</table>

For technical questions, contact: optocoupleranswers@vishay.com

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
SAFETY AND INSULATION RATINGS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>CONDITION</th>
<th>SYMBOL</th>
<th>VALUE</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climatic classification</td>
<td>According to IEC 68 part 1</td>
<td></td>
<td>40 / 100 / 21</td>
<td></td>
</tr>
<tr>
<td>Pollution degree</td>
<td>According to DIN VDE 0109</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Comparative tracking index</td>
<td>Insulation group IIIa</td>
<td>CTI</td>
<td>175</td>
<td></td>
</tr>
<tr>
<td>Maximum rated withstanding isolation voltage</td>
<td>According to UL1577, t = 1 min</td>
<td>VISO</td>
<td>5300</td>
<td>Vrms</td>
</tr>
<tr>
<td>Maximum transient isolation voltage</td>
<td>According to DIN EN 60747-5-5</td>
<td>VIORM</td>
<td>890</td>
<td>Vpeak</td>
</tr>
<tr>
<td>Maximum repetitive peak isolation voltage</td>
<td>According to DIN EN 60747-5-5</td>
<td>VIORM</td>
<td>890</td>
<td>Vpeak</td>
</tr>
<tr>
<td>Insulation resistance</td>
<td>One channel</td>
<td>RIO</td>
<td>≥ 10^12</td>
<td>Ω</td>
</tr>
<tr>
<td></td>
<td>Two channels</td>
<td>PSI0</td>
<td>640</td>
<td>mW</td>
</tr>
<tr>
<td>Output safety power</td>
<td>One channel</td>
<td>PSI0</td>
<td>640</td>
<td>mW</td>
</tr>
<tr>
<td></td>
<td>Two channels</td>
<td>PSI0</td>
<td>640</td>
<td>mW</td>
</tr>
<tr>
<td>Safety temperature</td>
<td>One channel</td>
<td>PSI0</td>
<td>640</td>
<td>mW</td>
</tr>
<tr>
<td></td>
<td>Two channels</td>
<td>PSI0</td>
<td>640</td>
<td>mW</td>
</tr>
<tr>
<td>Safety temperature</td>
<td>T_s</td>
<td></td>
<td>175</td>
<td>°C</td>
</tr>
<tr>
<td>Creepage distance</td>
<td>DIP-8</td>
<td></td>
<td>≥ 7</td>
<td>mm</td>
</tr>
<tr>
<td>Clearance distance</td>
<td>SMD-8</td>
<td></td>
<td>≥ 7</td>
<td>mm</td>
</tr>
<tr>
<td>Creepage distance</td>
<td>SMD-8</td>
<td>DTI</td>
<td>≥ 0.4</td>
<td>mm</td>
</tr>
<tr>
<td>Clearance distance</td>
<td>SMD-8</td>
<td>DTI</td>
<td>≥ 0.4</td>
<td>mm</td>
</tr>
<tr>
<td>Insulation thickness</td>
<td>DTI</td>
<td>≥ 0.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input to output test voltage, method B</td>
<td>VORM x 1.875 = VPR, 100% production test with t_M = 1 s, partial discharge < 5 pC</td>
<td>VPR</td>
<td>1669</td>
<td>Vpeak</td>
</tr>
<tr>
<td>Input to output test voltage, method A</td>
<td>VORM x 1.6 = VPR, 100% production test with t_M = 10 s, partial discharge < 5 pC</td>
<td>VPR</td>
<td>1424</td>
<td>Vpeak</td>
</tr>
</tbody>
</table>

Note
- As per IEC 60747-5-5, § 7.4.3.8.2, this optocoupler is suitable for “safe electrical insulation” only within the safety ratings. Compliance with the safety ratings shall be ensured by means of protective circuits.

Fig. 1 - Timing Schematic

Fig. 2 - Output Safety Power vs. Ambient Temperature

Fig. 3 - Input Safety Current vs. Ambient Temperature
TYPICAL CHARACTERISTICS (T\textsubscript{amb} = 25 °C, unless otherwise specified)

![Fig. 4 - Load Current vs. Ambient Temperature](image1)

![Fig. 5 - Forward Voltage vs. Ambient Temperature](image2)

![Fig. 6 - Forward Current vs. Forward Voltage](image3)

![Fig. 7 - Normalized Forward Current vs. Ambient Temperature](image4)

![Fig. 8 - Normalized On-Resistance vs. Ambient Temperature](image5)

![Fig. 9 - Switch Capacitance vs. Load Voltage](image6)
Fig. 10 - Leakage Current vs. Load Voltage

Fig. 11 - Normalized Turn-On Time vs. Ambient Temperature

Fig. 12 - Normalized Turn-Off Time vs. Ambient Temperature

Fig. 13 - Turn-On Time vs. Forward Current

Fig. 14 - Turn-Off Time vs. Forward Current
PACKAGE MARKING (example)

![Package Marking Diagram](Image)

Notes
- XXXX = LMC (lot marking code)
- Tape and reel suffix (TR) is not part of the package marking

PACKING INFORMATION (in millimeters)

![Packing Information Diagram](Image)

<table>
<thead>
<tr>
<th>TAPE AND REEL PACKING</th>
<th>UNITS/REEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMD-8</td>
<td>1000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TUBE PACKING</th>
<th>UNITS/TUBE</th>
<th>TUBES/BOX</th>
<th>UNITS/BOX</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMD-8</td>
<td>50</td>
<td>40</td>
<td>2000</td>
</tr>
<tr>
<td>DIP-8</td>
<td>50</td>
<td>40</td>
<td>2000</td>
</tr>
</tbody>
</table>
SOLDER PROFILES

Fig. 17 - Lead (Pb)-free Reflow Solder Profile According to J-STD-020 for SMD Devices

Fig. 18 - Wave Soldering Double Wave Profile According to J-STD-020 for DIP Devices

HANDLING AND STORAGE CONDITIONS
ESD level: HBM class 2
Floor life: unlimited
Conditions: T_{amb} < 30 °C, RH < 85 %
Moisture sensitivity level 1, according to J-STD-020
Footprint and Schematic Information for VOR2121

The footprint and schematic symbols for the following parts can be accessed using the associated links. They are available in Eagle, Altium, KiCad, OrCAD / Allegro, Pulsionix, and PADS.

Note that the 3D models for these parts can be found on the Vishay product page.

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>FOOTPRINT / SCHEMATIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOR2121B8T</td>
<td>www.snapeda.com/parts/VOR2121B8T/Vishay/view-part</td>
</tr>
</tbody>
</table>

For technical issues and product support, please contact optocoupleranswers@vishay.com.
Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation, special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay’s knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer’s responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer’s technical experts. Product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.