Subminiature Dual Channel Transmissive Optical Sensor
with Phototransistor Outputs

DESCRIPTION
The TCUT1300X01 is a compact transmissive sensor that includes an infrared emitter and two phototransistor detectors, located face-to-face in a surface mount package.

FEATURES
• Package type: surface mount
• Detector type: phototransistor
• Dimensions (L x W x H in mm): 5.5 x 4 x 4
• AEC-Q101 qualified
• Gap (in mm): 3
• Aperture (in mm): 0.3
• Channel distance (center to center): 0.8 mm
• Typical output current under test: I_C = 0.6 mA
• Emitter wavelength: 950 nm
• Lead (Pb)-free soldering released
• Moisture sensitivity level (MSL): 1
• Compliant to RoHS Directive 2002/95/EC and in accordance to WEEE 2002/96/EC

APPLICATIONS
• Automotive optical sensors
• Accurate position sensor for encoder
• Sensor for motion, speed and direction

PRODUCT SUMMARY

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>GAP WIDTH (mm)</th>
<th>APERTURE WIDTH (mm)</th>
<th>TYPICAL OUTPUT CURRENT UNDER TEST (I) (mA)</th>
<th>DAYLIGHT BLOCKING FILTER INTEGRATED</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCUT1300X01</td>
<td>3</td>
<td>0.3</td>
<td>0.6</td>
<td>No</td>
</tr>
</tbody>
</table>

Note
• Conditions like in table basic characteristics/coupler

ORDERING INFORMATION

<table>
<thead>
<tr>
<th>ORDERING CODE</th>
<th>PACKAGING</th>
<th>VOLUME (I)</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCUT1300X01</td>
<td>Tape and reel</td>
<td>MOQ: 2000 pcs, 2000 pcs/reel</td>
<td>Drypack, MSL 1</td>
</tr>
</tbody>
</table>

Note
• MOQ: minimum order quantity

For technical questions, contact: sensorstechsupport@vishay.com
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITION</th>
<th>SYMBOL</th>
<th>VALUE</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>COUPLER</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total power dissipation</td>
<td>$T_{amb} \leq 95 , ^\circ\text{C}$</td>
<td>P_{tot}</td>
<td>37.5</td>
<td>mW</td>
</tr>
<tr>
<td>Junction temperature</td>
<td></td>
<td>T_j</td>
<td>110</td>
<td>°C</td>
</tr>
<tr>
<td>Ambient temperature range</td>
<td>T_{amb}</td>
<td></td>
<td>-40 to +105</td>
<td>°C</td>
</tr>
<tr>
<td>Storage temperature range</td>
<td>T_{stg}</td>
<td></td>
<td>-40 to +125</td>
<td>°C</td>
</tr>
<tr>
<td>Soldering temperature</td>
<td>In accordance with fig. 16</td>
<td>T_{sd}</td>
<td>260</td>
<td>°C</td>
</tr>
<tr>
<td>INPUT (EMITTER)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reverse voltage</td>
<td></td>
<td>V_R</td>
<td>5</td>
<td>V</td>
</tr>
<tr>
<td>Forward current</td>
<td>$T_{amb} \leq 95 , ^\circ\text{C}$</td>
<td>I_F</td>
<td>25</td>
<td>mA</td>
</tr>
<tr>
<td>Forward surge current</td>
<td>$t_p \leq 10 , \mu\text{s}$</td>
<td>I_{FSM}</td>
<td>200</td>
<td>mA</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>$T_{amb} \leq 95 , ^\circ\text{C}$</td>
<td>P_V</td>
<td>37.5</td>
<td>mW</td>
</tr>
<tr>
<td>OUTPUT (DETECTOR)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collector emitter voltage</td>
<td></td>
<td>V_{CEO}</td>
<td>20</td>
<td>V</td>
</tr>
<tr>
<td>Emitter collector voltage</td>
<td></td>
<td>V_{ECO}</td>
<td>7</td>
<td>V</td>
</tr>
<tr>
<td>Collector current</td>
<td></td>
<td>I_C</td>
<td>20</td>
<td>mA</td>
</tr>
<tr>
<td>Collector dark current</td>
<td>$T_{amb} = 85 , ^\circ\text{C}, V_{CE} = 5 , \text{V}$</td>
<td>I_{CEO}</td>
<td>3.3</td>
<td>μA</td>
</tr>
</tbody>
</table>

ABSOLUTE MAXIMUM RATINGS

![Fig. 1 - Power Dissipation Limit vs. Ambient Temperature](image1)

![Fig. 2 - Forward Current Limit vs. Ambient Temperature](image2)
ELECTRICAL CHARACTERISTICS (T_{amb} = 25 °C, unless otherwise specified)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITION</th>
<th>SYMBOL</th>
<th>MIN.</th>
<th>TYP.</th>
<th>MAX.</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>COUPLER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collector current per channel</td>
<td>V<sub>CE</sub> = 5 V, I<sub>F</sub> = 15 mA</td>
<td>I<sub>C</sub></td>
<td>300</td>
<td>600</td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td>Collector emitter saturation voltage</td>
<td>I<sub>F</sub> = 15 mA, I<sub>C</sub> = 0.05 mA</td>
<td>V<sub>CEsat</sub></td>
<td></td>
<td></td>
<td>0.4</td>
<td>V</td>
</tr>
<tr>
<td>INPUT (EMITTER)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forward voltage</td>
<td>I<sub>F</sub> = 15 mA</td>
<td>V<sub>F</sub></td>
<td>1</td>
<td>1.2</td>
<td>1.4</td>
<td>V</td>
</tr>
<tr>
<td>Reverse current</td>
<td>V<sub>R</sub> = 5 V</td>
<td>I<sub>R</sub></td>
<td></td>
<td></td>
<td>10</td>
<td>μA</td>
</tr>
<tr>
<td>Junction capacitance</td>
<td>V<sub>R</sub> = 0 V, f = 1 MHz</td>
<td>C<sub>J</sub></td>
<td></td>
<td></td>
<td>25</td>
<td>pF</td>
</tr>
<tr>
<td>OUTPUT (DETECTOR)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collector emitter voltage I<sub>C</sub></td>
<td>I<sub>C</sub> = 1 mA</td>
<td>V<sub>CEO</sub></td>
<td>20</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Emitter collector voltage</td>
<td>I<sub>E</sub> = 100 μA</td>
<td>V<sub>EEO</sub></td>
<td>7</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Collector dark current</td>
<td>V<sub>CE</sub> = 25 V, I<sub>F</sub> = 0 A, E = 0 lx</td>
<td>I<sub>CEO</sub></td>
<td>1</td>
<td></td>
<td>100</td>
<td>nA</td>
</tr>
<tr>
<td>SWITCHING CHARACTERISTICS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rise time</td>
<td>I<sub>C</sub> = 0.3 mA, V<sub>CE</sub> = 5 V, R<sub>L</sub> = 100 Ω (see fig. 3)</td>
<td>t<sub>r</sub></td>
<td>20</td>
<td></td>
<td>150</td>
<td>μs</td>
</tr>
<tr>
<td>Fall time</td>
<td>I<sub>C</sub> = 0.3 mA, V<sub>CE</sub> = 5 V, R<sub>L</sub> = 100 Ω (see fig. 3)</td>
<td>t<sub>f</sub></td>
<td>30</td>
<td></td>
<td>150</td>
<td>μs</td>
</tr>
</tbody>
</table>

Fig. 3 - Test Circuit for t_r and t_f

Fig. 4 - Switching Times

BASIC CHARACTERISTICS (T_{amb} = 25 °C, unless otherwise specified)

Fig. 5 - Forward Current vs. Forward Voltage

Fig. 6 - Forward Voltage vs. Ambient Temperature
Fig. 7 - Collector Current vs. Forward Current

Fig. 8 - Collector Current vs. Collector Emitter Voltage

Fig. 9 - Collector Emitter Saturation Voltage vs. Ambient Temperature

Fig. 10 - Collector Current vs. Ambient Temperature

Fig. 11 - Collector Dark Current vs. Ambient Temperature

Fig. 12 - Relative Collector Current vs. Horizontal Displacement
Fig. 13 - Relative Collector Current vs. Vertical Displacement

Fig. 14 - Rise/Fall Time vs. Collector Current

Fig. 15 - Application example

REFLOW SOLDER PROFILE

Fig. 16 - Lead (Pb)-free Reflow Solder Profile acc. J-STD-020

FLOOR LIFE

Level 1, acc. JEDEC, J-STD-020. No time limit.

<table>
<thead>
<tr>
<th>RELIABILITY TESTS IN REFERENCE TO AEC-Q101 RELEASE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEST</td>
</tr>
<tr>
<td>High temperature storage</td>
</tr>
<tr>
<td>Low temperature storage</td>
</tr>
<tr>
<td>Temperature cycling</td>
</tr>
<tr>
<td>H3TRB</td>
</tr>
<tr>
<td>Intermittent operational life</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RELIABILITY TESTS IN REFERENCE TO ENHANCED TEMPERATURE RELEASE ACC. AEC-Q101</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEST</td>
</tr>
<tr>
<td>High temperature storage</td>
</tr>
<tr>
<td>Temperature cycling</td>
</tr>
<tr>
<td>Power temperature cycle</td>
</tr>
</tbody>
</table>
PACKAGE DIMENSIONS in millimeters

Emitter side
Wider contact for
Pin identification

Material Cutouts

Not indicated tolerances ±0.15

In accordance with specifications

Pin connection
Top view

Proposed solderpad design

Marking area

Drawing-No.: 6541-5051.01-4
Issue 6; 14.05.07
19536

www.vishay.com Vishay Semiconductors

Rev. 2.9, 04-Oct-11

For technical questions, contact: sensorstechsupport@vishay.com

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
PACKAGE DIMENSIONS in millimeters
Volume/reel = 2000 pcs

Reel-dimension and tape:

Tape position coming out from reel

Not indicated tolerances ±0.1

Technical drawings according to IEC specifications

Volume/reel = 2000 pcs

Parts mounted

Empty Leader 400mm min.

100mm min. with cover tape

Leader and trailer tape:

Empty Trailer 200mm min.

Direction of pulling out

Drawing-No: 9.800-5092.01-4
Issue: 1: 14.05.07
2011
Packaging and Ordering Information

PART NUMBER	**MOQ (1)**	**PCS PER TUBE**	**TUBE SPEC. (FIGURE)**	**CONSTITUENTS (FORMS)**
CNY70 | 4000 | 80 | 1 | 28
TCPT1300X01 | 2000 | Reel | (2) | 29
TCRT1000 | 1000 | Bulk | - | 26
TCRT1010 | 1000 | Bulk | - | 26
TCRT5000 | 4500 | 50 | 2 | 27
TCRT5000L | 2400 | 48 | 3 | 27
TCST1030 | 5200 | 65 | 5 | 24
TCST1030L | 2600 | 65 | 6 | 24
TCST1103 | 1020 | 85 | 4 | 24
TCST1202 | 1020 | 85 | 4 | 24
TCST1230 | 4800 | 60 | 7 | 24
TCST1300 | 1020 | 85 | 4 | 24
TCST2103 | 1020 | 85 | 4 | 24
TCST2202 | 1020 | 85 | 4 | 24
TCST2300 | 1020 | 85 | 4 | 24
TCST5250 | 4860 | 30 | 8 | 24
TCUT1300X01 | 2000 | Reel | (2) | 29
TCZT8020-PAER | 2500 | Bulk | - | 22

Notes
(1) MOQ: minimum order quantity
(2) Please refer to datasheets

TUBE SPECIFICATION FIGURES

![Diagram](image)

With rubber stopper
Tolerance: ±0.5mm
Length: 575±1mm

Drawing-No: 9.700-5097.01-4
Issue: 1, 25 02 00

Fig. 1
Fig. 2

Drawing-No.: 9.700-5139.01-4
Issue: 1; 10.05.00

Drawing refers to following types: TCRT 5000

With rubber stopper
Tolerance: ±0.5mm
Length: 575±1mm

Fig. 3

Drawing-No.: 9.700-5178.01-4
Issue: 1; 25.02.00

With stopper pins
Tolerance: ±0.5mm
Length: 575±1mm
Packaging and Ordering Information

Fig. 4

Drawing-No.: 9.700-5100.01-4
Issue: 1, 25.02.00

With rubber stopper
Tolerance: ±0.5mm
Length: 575±1mm

Fig. 5

Drawing-No.: 9.700-5140.01-4
Issue: 1, 25.02.00

With stopper pins
Tolerance: ±0.5mm
Length: 575±1mm
With stopper pins
Tolerance: ±0.5mm
Length: 575±1mm

Fig. 6

Drawing-No.: 9.700-5205.01-4
Issue: 1, 25.02.00

With rubber stopper
Tolerance: ±0.5mm
Length: 575±1mm

Fig. 7

Drawing-No.: 9.700-5245.01-4
Issue: 1, 25.02.00
With stopper pins
Tolerance: ±0.5mm
Length: 450±1mm
All dimensions in mm

Fig. 8
Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer’s responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer’s technical experts. Product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

© 2023 VISHAY INTERTECHNOLOGY, INC. ALL RIGHTS RESERVED