DESCRIPTION

The TCPT1350X01 is a compact transmissive sensor that includes an infrared emitter and a phototransistor detector, located face-to-face in a surface mount package. TCPT1350X01 is especially designed to meet high operating temperature requirements and is released for operating temperature ranges from -40 °C to +125 °C.

FEATURES

- Package type: surface mount
- Detector type: phototransistor
- Dimensions (L x W x H in mm): 5.5 x 4 x 4
- AEC-Q101 qualified
- Gap (in mm): 3
- Aperture (in mm): 0.3
- Typical output current under test: I_C = 1.6 mA
- Emitter wavelength: 950 nm
- Released for high operating temperatures up to 125 °C
- Moisture sensitivity level (MSL): 1
- Material categorization: For definitions of compliance please see www.vishay.com/doc?99912

APPLICATIONS

- Automotive optical sensors
- Accurate position sensor for encoder
- Detection of motion speed

PRODUCT SUMMARY

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>GAP WIDTH (mm)</th>
<th>APERTURE WIDTH (mm)</th>
<th>TYPICAL OUTPUT CURRENT UNDER TEST (mA)</th>
<th>DAYLIGHT BLOCKING FILTER INTEGRATED</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCPT1350X01</td>
<td>3</td>
<td>0.3</td>
<td>1.6</td>
<td>No</td>
</tr>
</tbody>
</table>

ORDERING INFORMATION

<table>
<thead>
<tr>
<th>ORDERING CODE</th>
<th>PACKAGING</th>
<th>VOLUME (1)</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCPT1350X01</td>
<td>Tape and reel</td>
<td>MOQ: 2000 pcs, 2000 pcs/reel</td>
<td>Drypack, MSL 1</td>
</tr>
</tbody>
</table>

Note

- Conditions like in table basic characteristics/coupler
- MOQ: minimum order quantity
ABSOLUTE MAXIMUM RATINGS

(T_{amb} = 25 °C, unless otherwise specified)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITION</th>
<th>SYMBOL</th>
<th>VALUE</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>COUPLER</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total power dissipation</td>
<td>T<sub>amb</sub> ≤ 125 °C</td>
<td>P<sub>tot</sub></td>
<td>37.5</td>
<td>mW</td>
</tr>
<tr>
<td>Junction temperature</td>
<td></td>
<td>T<sub>J</sub></td>
<td>140</td>
<td>°C</td>
</tr>
<tr>
<td>Ambient temperature range</td>
<td>T<sub>amb</sub></td>
<td>- 40 to + 125</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Storage temperature range</td>
<td>T<sub>stg</sub></td>
<td>- 40 to + 125</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Soldering temperature</td>
<td>In accordance with fig. 16</td>
<td>T<sub>sd</sub></td>
<td>260</td>
<td>°C</td>
</tr>
<tr>
<td>INPUT (EMITTER)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reverse voltage</td>
<td></td>
<td>V<sub>R</sub></td>
<td>5</td>
<td>V</td>
</tr>
<tr>
<td>Forward current</td>
<td>T<sub>amb</sub> ≤ 125 °C</td>
<td>I<sub>F</sub></td>
<td>25</td>
<td>mA</td>
</tr>
<tr>
<td>Forward surge current</td>
<td>t<sub>p</sub> ≤ 10 μs</td>
<td>I<sub>FSM</sub></td>
<td>200</td>
<td>mA</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>T<sub>amb</sub> ≤ 125 °C</td>
<td>P<sub>V</sub></td>
<td>37.5</td>
<td>mW</td>
</tr>
<tr>
<td>OUTPUT (DETECTOR)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collector emitter voltage</td>
<td></td>
<td>V<sub>CEO</sub></td>
<td>20</td>
<td>V</td>
</tr>
<tr>
<td>Emitter collector voltage</td>
<td></td>
<td>V<sub>EKO</sub></td>
<td>7</td>
<td>V</td>
</tr>
<tr>
<td>Collector current</td>
<td></td>
<td>I<sub>C</sub></td>
<td>20</td>
<td>mA</td>
</tr>
<tr>
<td>Collector dark current</td>
<td>T<sub>amb</sub> = 85 °C, V<sub>CE</sub> = 5 V</td>
<td>I<sub>CEO</sub></td>
<td>3.3</td>
<td>μA</td>
</tr>
</tbody>
</table>

![Fig. 1 - Power Dissipation Limit vs. Ambient Temperature](image1.png)

![Fig. 2 - Forward Current Limit vs. Ambient Temperature](image2.png)
BASIC CHARACTERISTICS (T_{amb} = 25 °C, unless otherwise specified)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITION</th>
<th>SYMBOL</th>
<th>MIN.</th>
<th>TYP.</th>
<th>MAX.</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector current</td>
<td>V<sub>CE</sub> = 5 V, I<sub>F</sub> = 15 mA</td>
<td>I<sub>C</sub></td>
<td>0.7</td>
<td>1.6</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Collector emitter saturation</td>
<td></td>
<td>V<sub>CESat</sub></td>
<td></td>
<td>0.4</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>voltage</td>
<td>I<sub>F</sub> = 15 mA, I<sub>E</sub> = 0.2 mA</td>
<td>V<sub>F</sub></td>
<td>1</td>
<td>1.2</td>
<td>1.4</td>
<td>V</td>
</tr>
<tr>
<td>Junction capacitance</td>
<td>V<sub>R</sub> = 0 V, f = 1 MHz</td>
<td>C<sub>j</sub></td>
<td></td>
<td>25</td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>Collector emitter voltage I<sub>C</sub></td>
<td>I<sub>C</sub> = 1 mA</td>
<td>V<sub>CEO</sub></td>
<td>20</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Emitter collector voltage</td>
<td>I<sub>E</sub> = 100 μA</td>
<td>V<sub>EEO</sub></td>
<td>7</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Collector dark current</td>
<td>V<sub>CE</sub> = 25 V, I<sub>F</sub> = 0 A, E = 0 lx</td>
<td>I<sub>CEO</sub></td>
<td>1</td>
<td>100</td>
<td></td>
<td>nA</td>
</tr>
</tbody>
</table>

SWITCHING CHARACTERISTICS

- **Rise time**
 - Channel I: I_C = 0.7 mA, V_{CE} = 5 V, R_L = 100 Ω (see figure 3)
 - t_r = 9 µs

- **Fall time**
 - Channel I: I_C = 0.7 mA, V_{CE} = 5 V, R_L = 100 Ω (see figure 3)
 - t_f = 16 µs

Fig. 3 - Test Circuit for t_r and t_f

Fig. 4 - Switching Times

BASIC CHARACTERISTICS (T_{amb} = 25 °C, unless otherwise specified)

- **Fig. 5 - Forward Current vs. Forward Voltage**
- **Fig. 6 - Forward Voltage vs. Ambient Temperature**
Fig. 7 - Collector Current vs. Forward Current

Fig. 8 - Collector Current vs. Collector Emitter Voltage

Fig. 9 - Collector Emitter Saturation Voltage vs. Ambient Temperature

Fig. 10 - Collector Current vs. Ambient Temperature

Fig. 11 - Collector Dark Current vs. Ambient Temperature

Fig. 12 - Relative Collector Current vs. Horizontal Displacement
Fig. 13 - Relative Collector Current vs. Vertical Displacement

Fig. 14 - Rise/Fall Time vs. Collector Current

Fig. 15 - Application example

Fig. 16 - Lead (Pb)-free Reflow Solder Profile acc. J-STD-020

FLOOR LIFE
No time limit.
Moisture sensitivity level (MSL) 1, acc. JEDEC, J-STD-020.
PACKAGE DIMENSIONS in millimeters

![Package Dimensions Diagram](image)

Pin connection
Top view

Proposed solderpad design

Marking area

Drawing-No.: 6541-5062.01-4
Issue: 6; 14.05.07

10591
PACKAGE DIMENSIONS in millimeters
Volume/reel = 2000 pcs

Unreel direction
Tape position coming out from reel
Not indicated tolerances ±0.1

Parts mounted
Empty Leader 4.0mm min.
100mm min. with cover tape

Leader and trailer tape:
Empty Trailer 200mm min.
Direction of pulling out

X 2:1

Drawing-No.: 5.800-5092.02-4
Issue 1: 14.05.07

For technical questions, contact: sensorstechsupport@vishay.com
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
Packaging and Ordering Information

Notes
1. MOQ: minimum order quantity
2. Please refer to datasheets

TUBE SPECIFICATION FIGURES

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>MOQ (1)</th>
<th>PCS PER TUBE</th>
<th>TUBE SPEC. (FIGURE)</th>
<th>CONSTITUENTS (FORMS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNY70</td>
<td>4000</td>
<td>80</td>
<td>1</td>
<td>28</td>
</tr>
<tr>
<td>TCPT1300X01</td>
<td>2000</td>
<td>Reel</td>
<td>(2)</td>
<td>29</td>
</tr>
<tr>
<td>TCRT1000</td>
<td>1000</td>
<td>Bulk</td>
<td>-</td>
<td>26</td>
</tr>
<tr>
<td>TCRT1010</td>
<td>1000</td>
<td>Bulk</td>
<td>-</td>
<td>26</td>
</tr>
<tr>
<td>TCRT5000</td>
<td>4500</td>
<td>50</td>
<td>2</td>
<td>27</td>
</tr>
<tr>
<td>TCRT5000L</td>
<td>2400</td>
<td>48</td>
<td>3</td>
<td>27</td>
</tr>
<tr>
<td>TCST1030</td>
<td>5200</td>
<td>65</td>
<td>5</td>
<td>24</td>
</tr>
<tr>
<td>TCST1030L</td>
<td>2600</td>
<td>65</td>
<td>6</td>
<td>24</td>
</tr>
<tr>
<td>TCST1103</td>
<td>1020</td>
<td>85</td>
<td>4</td>
<td>24</td>
</tr>
<tr>
<td>TCST1202</td>
<td>1020</td>
<td>85</td>
<td>4</td>
<td>24</td>
</tr>
<tr>
<td>TCST1230</td>
<td>4800</td>
<td>60</td>
<td>7</td>
<td>24</td>
</tr>
<tr>
<td>TCST1300</td>
<td>1020</td>
<td>85</td>
<td>4</td>
<td>24</td>
</tr>
<tr>
<td>TCST2103</td>
<td>1020</td>
<td>85</td>
<td>4</td>
<td>24</td>
</tr>
<tr>
<td>TCST2202</td>
<td>1020</td>
<td>85</td>
<td>4</td>
<td>24</td>
</tr>
<tr>
<td>TCST2300</td>
<td>1020</td>
<td>85</td>
<td>4</td>
<td>24</td>
</tr>
<tr>
<td>TCST5250</td>
<td>4860</td>
<td>30</td>
<td>8</td>
<td>24</td>
</tr>
<tr>
<td>TCUT1300X01</td>
<td>2000</td>
<td>Reel</td>
<td>(2)</td>
<td>29</td>
</tr>
<tr>
<td>TCZT8020-PAER</td>
<td>2500</td>
<td>Bulk</td>
<td>-</td>
<td>22</td>
</tr>
</tbody>
</table>

With rubber stopper
Tolerance: ±0.5mm
Length: 575±1mm

Drawing-No: 9700-5097.01-4
Issue: 1, 25.02.00

Fig. 1
Packaging and Ordering Information

Vishay Semiconductors Packaging and Ordering Information

Fig. 2

Drawing-No.: 9.700-5139.01-4
Issue: 1, 10.05.00

Drawing refers to following types: TCRT 5000

With rubber stopper
Tolerance: ±0.5mm
Length: 575±1mm

Fig. 3

Drawing-No.: 9.700-5178.01-4
Issue: 1, 25.02.00

With stopper pins
Tolerance: ±0.5mm
Length: 575±1mm
With stopper pins
Tolerance: ±0.5mm
Length: 575±1mm

Drawing-No.: 9.700-5205.01-4
Issue: 1, 25.02.00

Fig. 6

With rubber stopper
Tolerance: ±0.5mm
Length: 575±1mm

Drawing-No.: 9.700-5245.01-4
Issue: 1, 25.02.00

Fig. 7
Packaging and Ordering Information

Fig. 8

Drawing-No.: 9.700-5222.01-4
Issue: 2; 19.11.04
202/57

With stopper pins
Tolerance: ±0.5mm
Length: 450 ± 1mm
All dimensions in mm
Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay’s knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer’s responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer’s technical experts. Product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.