Surface-Mount Glass Passivated Junction Fast Switching Rectifier

FEATURES
- Superrectifier structure for high reliability condition
- Ideal for automated placement
- Fast switching for high efficiency
- Meets MSL level 1, per J-STD-020, LF maximum peak of 260 °C
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

TYPICAL APPLICATIONS
For use in fast switching rectification of power supply, inverters, converters, and freewheeling diodes for consumer, automotive, and telecommunication.

MECHANICAL DATA
Case: GL34 (DO-213AA), molded epoxy over glass body
Molding compound meets UL 94 V-0 flammability rating
Base P/N-E3 - RoHS- compliant, commercial grade
Terminals: matte tin plated leads, solderable per J-STD-002 and JESD 22-B102
E3 suffix meets JESD 201 class 1A whisker test
Polarity: two bands indicate cathode end - 1st band denotes device type and 2nd band denotes repetitive peak reverse voltage rating

MAXIMUM RATINGS (T_A = 25 °C unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>RGL34A</th>
<th>RGL34B</th>
<th>RGL34D</th>
<th>RGL34G</th>
<th>RGL34J</th>
<th>RGL34K</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polarity color bands (2nd band)</td>
<td></td>
<td>Gray</td>
<td>Red</td>
<td>Orange</td>
<td>Yellow</td>
<td>Green</td>
<td>Blue</td>
<td></td>
</tr>
<tr>
<td>Maximum repetitive peak reverse voltage</td>
<td>V_RRM</td>
<td>50</td>
<td>100</td>
<td>200</td>
<td>400</td>
<td>600</td>
<td>800</td>
<td>V</td>
</tr>
<tr>
<td>Maximum RMS voltage</td>
<td>V_RMS</td>
<td>35</td>
<td>70</td>
<td>140</td>
<td>280</td>
<td>420</td>
<td>560</td>
<td>V</td>
</tr>
<tr>
<td>Maximum DC blocking voltage</td>
<td>V_DC</td>
<td>50</td>
<td>100</td>
<td>200</td>
<td>400</td>
<td>600</td>
<td>800</td>
<td>V</td>
</tr>
<tr>
<td>Maximum average forward rectified current at T_F = 55 °C</td>
<td>I_(AV)</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>Peak forward surge current 8.3 ms single half sine-wave superimposed on rated load</td>
<td>I_MSK</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>Maximum full load reverse current, full cycle average T_A = 55 °C</td>
<td>I_(VW)</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td>Operating junction and storage temperature range</td>
<td>T_J, T_STG</td>
<td>-65 to +175</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>°C</td>
</tr>
</tbody>
</table>
ELECTRICAL CHARACTERISTICS (\(T_A = 25 \, ^\circ\text{C}\) unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>SYMBOL</th>
<th>RGL34A</th>
<th>RGL34B</th>
<th>RGL34D</th>
<th>RGL34G</th>
<th>RGL34J</th>
<th>RGL34K</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum instantaneous forward voltage</td>
<td>0.5 A</td>
<td>(V_F)</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Maximum DC reverse current at rated DC blocking voltage</td>
<td>(T_A = 25 , ^\circ\text{C})</td>
<td>(I_R)</td>
<td>5.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(\mu\text{A})</td>
</tr>
<tr>
<td></td>
<td>(T_A = 125 , ^\circ\text{C})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum reverse recovery time</td>
<td>(I_F = 0.5 , \text{A}, , I_R = 1.0 , \text{A}, , I_{rr} = 0.25 , \text{A})</td>
<td>(t_{rr})</td>
<td>150</td>
<td>250</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Typical junction capacitance</td>
<td>4.0 V, 1 MHz</td>
<td>(C_J)</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>pF</td>
</tr>
</tbody>
</table>

THERMAL CHARACTERISTICS (\(T_A = 25 \, ^\circ\text{C}\) unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>RGL34A</th>
<th>RGL34B</th>
<th>RGL34D</th>
<th>RGL34G</th>
<th>RGL34J</th>
<th>RGL34K</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum thermal resistance</td>
<td>(R_{\theta JA}^{(1)})</td>
<td>150</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(\degree\text{C/W})</td>
</tr>
<tr>
<td></td>
<td>(R_{\theta JT}^{(2)})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes

1. Thermal resistance from junction to ambient, 0.2" x 0.2" (5.0 mm x 5.0 mm) copper pads to each terminal
2. Thermal resistance from junction to terminal, 0.2" x 0.2" (5.0 mm x 5.0 mm) copper pads to each terminal

ORDERING INFORMATION (Example)

<table>
<thead>
<tr>
<th>PREFERRED P/N</th>
<th>UNIT WEIGHT (g)</th>
<th>PREFERRED PACKAGE CODE</th>
<th>BASE QUANTITY</th>
<th>DELIVERY MODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>RGL34J-E3/98</td>
<td>0.036</td>
<td>98</td>
<td>2500</td>
<td>7" diameter plastic tape and reel</td>
</tr>
<tr>
<td>RGL34J-E3/83</td>
<td>0.036</td>
<td>83</td>
<td>9000</td>
<td>13" diameter plastic tape and reel</td>
</tr>
</tbody>
</table>
RATINGS AND CHARACTERISTICS CURVES \((T_A = 25 \, ^\circ\text{C} \text{ unless otherwise noted})\)

![Graph of Forward Current Derating Curve](image1)

Fig. 1 - Forward Current Derating Curve

![Graph of Instantaneous Reverse Current](image2)

Fig. 4 - Typical Reverse Characteristics

![Graph of Maximum Non-Repetitive Peak Forward Surge Current](image3)

Fig. 2 - Maximum Non-Repetitive Peak Forward Surge Current

![Graph of Typical Instantaneous Forward Characteristics](image4)

Fig. 3 - Typical Instantaneous Forward Characteristics

![Graph of Typical Junction Capacitance](image5)

Fig. 5 - Typical Junction Capacitance
PACKAGE OUTLINE DIMENSIONS in inches (millimeters)

GL34 (DO-213AA)

- **Solderable Ends**
 - 1st BAND D1
 - 2nd BAND D2

- **Dimensions**
 - D1: 0.048 (1.22)
 - D2: 0.049 (1.25) Min.
 - 0.145 (3.683) Max.

1st band denotes type and polarity
2nd band denotes voltage type

Mounting Pad Layout

- 0.079 (2.0) Min.
- 0.177 (4.5) REF.

- D1 = D2 = D1 - 0.008 (0.20)

For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com

This document is subject to change without notice. The products described herein and this document are subject to specific disclaimers, set forth at www.vishay.com/doc?91000
Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay’s knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer’s responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer’s technical experts. Product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.