High Voltage Ultrafast Avalanche SMD Rectifiers

FEATURES
- Glass passivated pellet chip junction
- Low profile package
- Ideal for automated placement
- Low reverse current
- High reverse voltage
- Ultra fast reverse recovery time
- Meets MSL level 1, per J-STD-020, LF maximum peak of 260 °C
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

MECHANICAL DATA
Case: SMA (DO-214AC)
Molding compound meets UL 94 V-0 flammability rating
Base P/N-M3 - halogen-free, RoHS-compliant, and commercial grade
Terminals: matte tin plated leads, solderable per J-STD-002 and JESD 22-B102
M3 suffix meets JESD 201 class 2 whisker test
Polarity: color band denotes the cathode end

TYPICAL APPLICATIONS
For use in high voltage, high frequency rectification specially suited for freewheeling, clamping, snubbing in power supply, ignition drive of HID, UHP and industrial ballast and snubber for PDP TV power supply application.

ADDITIONAL RESOURCES

3D Models

PRIMARY CHARACTERISTICS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>BYG23T</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device marking code</td>
<td></td>
<td>BYG23T</td>
<td></td>
</tr>
<tr>
<td>Maximum repetitive peak reverse voltage</td>
<td>V_RRM</td>
<td>1300</td>
<td>V</td>
</tr>
<tr>
<td>Maximum DC forward current (fig.1)</td>
<td>I_F (1)</td>
<td>1.0</td>
<td>A</td>
</tr>
<tr>
<td>Peak forward surge current 8.3 ms single half sine-wave superimposed on rated load</td>
<td>I_FSM</td>
<td>18</td>
<td>A</td>
</tr>
<tr>
<td>Pulse energy in avalanche mode, non repetitive (inductive load switch off) I_BR=0.4 A, T_L=25 °C</td>
<td>E_R</td>
<td>5</td>
<td>mJ</td>
</tr>
<tr>
<td>Maximum operating junction temperature</td>
<td>T_J</td>
<td>150</td>
<td>°C</td>
</tr>
<tr>
<td>Storage temperature range</td>
<td>T_STG</td>
<td>-55 to +150</td>
<td>°C</td>
</tr>
</tbody>
</table>

MAXIMUM RATINGS (T_C = 25 °C unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>BYG23T</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device marking code</td>
<td></td>
<td>BYG23T</td>
<td></td>
</tr>
<tr>
<td>Maximum repetitive peak reverse voltage</td>
<td>V_RRM</td>
<td>1300</td>
<td>V</td>
</tr>
<tr>
<td>Maximum DC forward current (fig.1)</td>
<td>I_F (1)</td>
<td>1.0</td>
<td>A</td>
</tr>
<tr>
<td>Peak forward surge current 8.3 ms single half sine-wave superimposed on rated load</td>
<td>I_FSM</td>
<td>18</td>
<td>A</td>
</tr>
<tr>
<td>Pulse energy in avalanche mode, non repetitive (inductive load switch off) I_BR=0.4 A, T_L=25 °C</td>
<td>E_R</td>
<td>5</td>
<td>mJ</td>
</tr>
<tr>
<td>Maximum operating junction temperature</td>
<td>T_J</td>
<td>150</td>
<td>°C</td>
</tr>
<tr>
<td>Storage temperature range</td>
<td>T_STG</td>
<td>-55 to +150</td>
<td>°C</td>
</tr>
</tbody>
</table>

Note
- Free air, mounted on recommended copper pad area
ELECTRICAL CHARACTERISTICS

PARAMETER	**TEST CONDITIONS**	**SYMBOL**	**TYP.**	**MAX.**	**UNIT**
Instantaneous forward voltage (1) | \(I_F = 1.0 \, \text{A} \) | \(V_F \) | 1.74 | 1.9 | V
Reverse current (2) | \(V_R = 1300 \, \text{V} \) | \(I_R \) | - | 5.0 | \(\mu \text{A} \)
Maximum reverse recovery time | \(I_F = 0.5 \, \text{A}, I_R = 1.0 \, \text{A}, I_F = 0.25 \, \text{A} \) | \(T_A = 25 \, \text{°C} \) | \(t_{rr} \) | 65 | 75 | ns
Forward recovery time | \(I_F = 1.5 \, \text{A}, dI/dt = 12 \, \text{A/μs}, \ V_F = 1.1 \times V_F \text{ max.} \) | \(T_A = 25 \, \text{°C} \) | \(t_{fr} \) | 620 | - | ns
Peak forward voltage | \(V_F \) | 9.0 | - | V
Typical junction capacitance | 4.0 V, 1 MHz | \(C_J \) | 9.0 | - | pF

Notes

(1) Pulse test: 300 μs pulse width, 1 % duty cycle
(2) Pulse test: Pulse width ≤ 40 ms

THERMAL CHARACTERISTICS

PARAMETER	**SYMBOL**	**BYG23T**	**UNIT**
Typical thermal resistance (1)	\(R_{\theta JA} \)	120	°C/W
\(R_{\theta JM} \)	20	°C/W	

Note

(1) Free air, mounted on recommended PCB 1 oz. pad area. Thermal resistance \(R_{\theta JA} \) - junction to ambient, \(R_{\theta JM} \) - junction to mount

ORDERING INFORMATION

PREFERRED P/N	UNIT WEIGHT (g)	PREFERRED PACKAGE CODE	BASE QUANTITY	DELIVERY MODE
BYG23T-M3/TR	0.064	TR	1800	7” diameter plastic tape and reel
BYG23T-M3/TR3	0.064	TR3	7500	13” diameter plastic tape and reel
RATINGS AND CHARACTERISTICS CURVES \(T_A = 25 \, ^\circ\text{C}\) unless otherwise noted

- **Fig. 1** - Max. Forward Current Derating Curve
- **Fig. 2** - Forward Power Loss Characteristics
- **Fig. 3** - Typical Instantaneous Forward Characteristics
- **Fig. 4** - Typical Reverse Characteristics
- **Fig. 5** - Typical Junction Capacitance
- **Fig. 6** - Typical Transient Thermal Impedance
PACKAGE OUTLINE DIMENSIONS in inches (millimeters)

SMA (DO-214AC)

Mounting Pad Layout

For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay’s knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer’s responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer’s technical experts. Product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.