IRFZ34

Vishay Siliconix

TO-220AB

PRODUCT SUMMARY

 V_{DS} (V)

R_{DS(on)} (Ω)

Q_a (Max.) (nC)

Q_{gs} (nC)

Q_{gd} (nC)

Configuration

Power MOSFET

FEATURES

- Dynamic dV/dt rating
- 175 °C operating temperature
- Fast switching
- Ease of paralleling
- Simple drive requirements
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

Note

S

N-Channel MOSFET

0.050

60

46

11

22

Single

V_{GS} = 10 V

* This datasheet provides information about parts that are RoHS-compliant and / or parts that are non RoHS-compliant. For example, parts with lead (Pb) terminations are not RoHS-compliant. Please see the information / tables in this datasheet for details

DESCRIPTION

Third generation power MOSFETs from Vishay provide the designer with the best combination of fast switching, ruggedized device design, low on-resistance and cost-effectiveness.

The TO-220AB package is universally preferred for all commercial-industrial applications at power dissipation levels to approximately 50 W. The low thermal resistance and low package cost of the TO-220AB contribute to its wide acceptance throughout the industry.

ORDERING INFORMATION	
Package	TO-220AB
Lead (Pb)-free	IRFZ34PbF
Lead (Pb)-free and halogen-free	IRFZ34PbF-BE3

ABSOLUTE MAXIMUM RATINGS ($T_c = 25 \degree C$, unless otherwise noted)									
PARAMETER			SYMBOL	MBOL LIMIT					
Drain-source voltage			V _{DS}	60	V				
Gate-source voltage			V _{GS}	± 20	v				
Continuous drain current	V _{GS} at 10 V	$T_{\rm C} = 25 \ ^{\circ}{\rm C}$ $T_{\rm C} = 100 \ ^{\circ}{\rm C}$	- I _D	30					
		T _C = 100 °C		21	А				
Pulsed drain current ^a			I _{DM}	120					
Linear derating factor				0.59	W/°C				
Single pulse avalanche energy ^b			E _{AS}	200	mJ				
Maximum power dissipation	T _C = 25 °C		PD	88	W				
Peak diode recovery dV/dt ^c			dV/dt	4.5	V/ns				
Operating junction and storage temperature range			T _J , T _{stg}	-55 to +175	°C				
Soldering recommendations (peak temperature) ^d	For	10 s		300 ^d					
Mounting torque	6-32 or M3 screw			10	lbf ∙ in				
				1.1	N · m				

Notes

a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11)

b. V_{DD} = 25 V, starting T_J = 25 °C, L = 259 µH, R_g = 25 Ω , I_{AS} = 30 A (see fig. 12)

c. $I_{SD} \le 30$ A, dl/dt ≤ 200 A/µs, $V_{DD} \le V_{DS}$, $T_J \le 175$ °C

d. 1.6 mm from case

S21-1045-Rev. C, 25-Oct-2021

ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishav.com/doc?91000</u>

www.vishay.com

SHAY

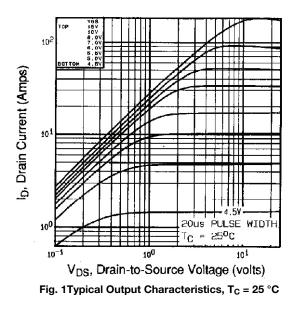
Vishay Siliconix

	THERMAL RESISTANCE RATINGS												
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	PARAMETER	SYMBOL	TYP	TYP. MAX.			UNIT						
Maximum junction-to-case (drain) Rmoc - 1.7 SPECIFICATIONS (T _J = 25 °C, unless otherwise noted) Far on the second of the sec	Maximum junction-to-ambient	R _{thJA}				°C/W							
	Case-to-sink, flat, greased surface	R _{thCS}											
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Maximum junction-to-case (drain)	R _{thJC}	- 1.7										
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	SPECIFICATIONS (T ₁ = 25 °C, unless otherwise noted)												
Static Visit of the state of					IONS	MIN.	TYP.	MAX.	UNIT				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Static												
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Drain-source breakdown voltage	V _{DS}	V _{GS} =	= 0 V, I _D = 2	50 μA	60	-	-	V				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	V _{DS} temperature coefficient		Reference	e to 25 °C,	$I_D = 1 \text{ mA}$	-	0.065	-	V/°C				
	Gate-source threshold voltage	V _{GS(th)}				2.0	-	4.0	V				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Gate-source leakage		,				-	± 100	nA				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			V _{DS} :	= 60 V, V _{GS}	= 0 V	-	-	25					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Zero gate voltage drain current	IDSS	V _{DS} = 48 V	, V _{GS} = 0 V,	T _J = 150 °C	-	-	250	μA 250				
	Drain-source on-state resistance	R _{DS(on)}	$V_{GS} = 10 V$	I _D	= 18 A ^b	-	-	0.050	Ω				
$ \begin{array}{c c c c c c c c c } \hline Input capacitance & C_{1ss} & & V_{GS} = 0 \ V, & V_{DS} = 2 \ V, & f = 1.0 \ MHz, see fig. 5 & - & 600 & - & - & &$	Forward transconductance	9 _{fs}	V _{DS}	= 25 V, I _D =	18 A	9.3	-	-	S				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Dynamic												
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Input capacitance	C _{iss}		$V_{ee} = 0 V$		-	1200	-					
$\begin{array}{ c c c c c c } \hline \mbox{Heverse transfer capacitance} & C_{rss} & & & & & & & & & & & & & & & & & & $	Output capacitance			$V_{DS} = 25 V,$		-	600	-	pF				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Reverse transfer capacitance	C _{rss}	f = 1.			-	100	-					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Total gate charge	Qg			-	-	46						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Gate-source charge	Q _{gs}	V _{GS} = 10 V			-	-	11	nC				
$ \frac{\text{Rise time}}{\text{Turn-off delay time}} \frac{\text{t}_{\text{r}}}{\text{Turn-off delay time}} \frac{\text{t}_{\text{d(off)}}}{\text{t}_{\text{d(off)}}} \\ \frac{\text{Fall time}}{\text{Fall time}} \frac{\text{t}_{\text{f}}}{\text{t}} \frac{\text{t}_{\text{f}}}{\text{t}} \\ \frac{\text{L}_{\text{D}}}{\text{Internal drain inductance}} \frac{\text{L}_{\text{D}}}{\text{L}_{\text{S}}} \frac{\text{Between lead,}}{\text{mm} (0.25^{\circ}) \text{ from}} \\ \frac{\text{package and center of}}{\text{die contact}} \frac{\text{off}}{\text{off}} \frac{\text{off}}{\text{die contact}} \frac{\text{off}}{\text{die contact}} $	Gate-drain charge	Q _{gd}				-	-	22					
$ \frac{\text{Rise time}}{\text{Turn-off delay time}} \frac{\text{t}_{\text{r}}}{\text{Turn-off delay time}} \frac{\text{t}_{\text{d(off)}}}{\text{t}_{\text{d(off)}}} \\ \frac{\text{Fall time}}{\text{Fall time}} \frac{\text{t}_{\text{f}}}{\text{t}} \frac{\text{t}_{\text{f}}}{\text{t}} \\ \frac{\text{L}_{\text{D}}}{\text{Internal drain inductance}} \frac{\text{L}_{\text{D}}}{\text{L}_{\text{S}}} \frac{\text{Between lead,}}{\text{mm} (0.25^{\circ}) \text{ from}} \\ \frac{\text{package and center of}}{\text{die contact}} \frac{\text{off}}{\text{off}} \frac{\text{off}}{\text{die contact}} \frac{\text{off}}{\text{die contact}} $	Turn-on delay time	t _{d(on)}				-	13	-					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Rise time		Voo	Vpp = 30 V Jp = 30 A		-	100	-	-				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Turn-off delay time	t _{d(off)}	$R_g = 12 \Omega$, $R_D = 1.0 \Omega$, see fig. 10^b		-	29	-	ns					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Fall time				-	52	-						
Internal source inductanceLSMOSFET symbol showing the integral reverse p - n junction diode-7.5-Drain-Source Body Diode CharacteristicsContinuous source-drain diode currentISMOSFET symbol 	Internal drain inductance	L _D	6 mm (0.25") from ackage and center of		-	4.5	-	nH					
	Internal source inductance	L _S			-	7.5	-						
Pulsed diode forward current aIssshowing the integral reverse p - n junction diodeIssAPulsed diode forward current aIsmIsm $r_J = 25 ^{\circ}C$, Is = 30 A, VGS = 0 Vb120Body diode voltageVsp $T_J = 25 ^{\circ}C$, Is = 30 A, VGS = 0 Vb1.6VBody diode reverse recovery time t_{rr} $T_J = 25 ^{\circ}C$, IF = 30 A, dI/dt = 100 A/µs-120230nsBody diode reverse recovery charge Q_{rr} $T_J = 25 ^{\circ}C$, IF = 30 A, dI/dt = 100 A/µs-0.71.4nC	Drain-Source Body Diode Characteristic	cs											
Pulsed diode forward current aIsmIntegral reverse p - n junction diode120Body diode voltage V_{SD} $T_J = 25 {}^{\circ}C$, $I_S = 30 A$, $V_{GS} = 0 V^b$ 1.6VBody diode reverse recovery time t_{rr} $T_J = 25 {}^{\circ}C$, $I_F = 30 A$, $dI/dt = 100 A/\mu s$ -120230nsBody diode reverse recovery charge Q_{rr} $T_J = 25 {}^{\circ}C$, $I_F = 30 A$, $dI/dt = 100 A/\mu s$ -0.71.4nC	Continuous source-drain diode current	I _S			-	-	30	A					
Body diode reverse recovery time t_{rr} $T_J = 25 \ ^{\circ}C$, $I_F = 30 \ ^{A}$, $dI/dt = 100 \ ^{A}\mu s$ -120230nsBody diode reverse recovery charge Q_{rr} $T_J = 25 \ ^{\circ}C$, $I_F = 30 \ ^{A}$, $dI/dt = 100 \ ^{A}\mu s$ -0.71.4nC	Pulsed diode forward current ^a	I _{SM}				-	-		120				
$ \begin{array}{c c} T_{J} = 25 \ ^{\circ}\text{C}, \ I_{F} = 30 \ \text{A}, \ \text{d}I/\text{d}t = 100 \ \text{A}/\mu\text{s} \\ \hline & - & 0.7 & 1.4 & \text{nC} \\ \end{array} $	Body diode voltage	V _{SD}	$T_J = 25 \ ^{\circ}C, \ I_S = 30 \ A, \ V_{GS} = 0 \ V^b$			-	-	1.6	V				
Body diode reverse recovery charge Q _{rr} - 0.7 1.4 nC	Body diode reverse recovery time	t _{rr}			-	120	230	ns					
Forward turn-on time ton lntrinsic turn-on time is negligible (turn-on is dominated by L _S and L _D)	Body diode reverse recovery charge	Q _{rr}	$I_{\rm J}$ = 25 °C, $I_{\rm F}$ = 30 A, dl/dt = 100 A/µs			-	0.7	1.4	nC				
	Forward turn-on time	t _{on}	Intrinsic turn-on time is negligible (turn			-on is dominated by L_S and L_D)							

Notes

a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11)

b. Pulse width \leq 300 µs; duty cycle \leq 2 %


2

For technical questions, contact: <u>hvm@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

Vishay Siliconix

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

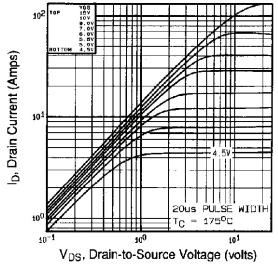
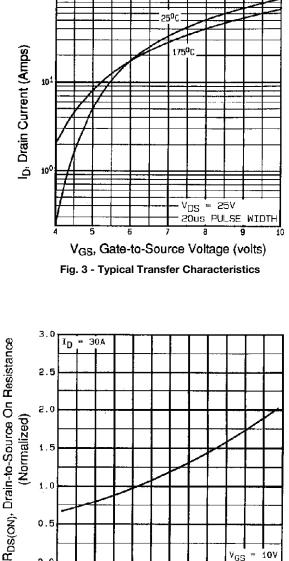



Fig. 2Typical Output Characteristics, T_C = 175 °C

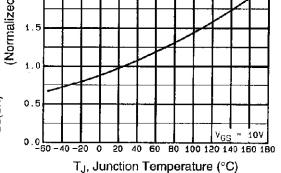
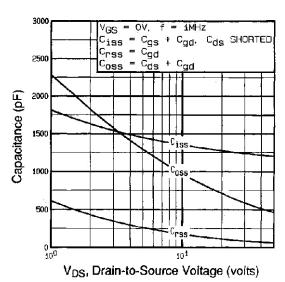



Fig. 4 - Normalized On-Resistance vs. Temperature

Vishay Siliconix

www.vishay.com

SHAY

Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage

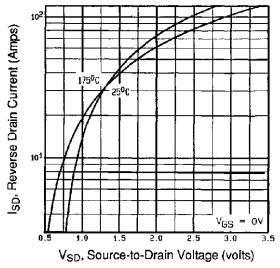


Fig. 7 - Typical Source-Drain Diode Forward Voltage

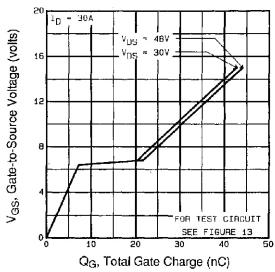
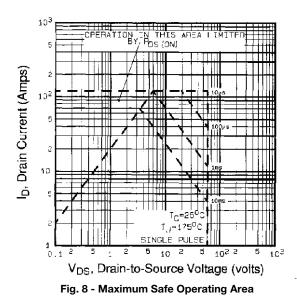



Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage

4

For technical questions, contact: <u>hvm@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

IRFZ34

Vishay Siliconix

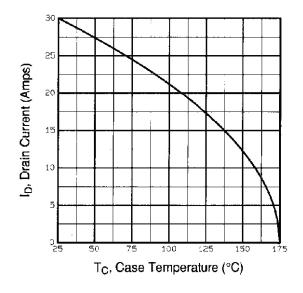


Fig. 9 - Maximum Drain Current vs. Case Temperature

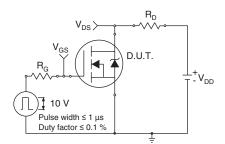


Fig. 10a - Switching Time Test Circuit

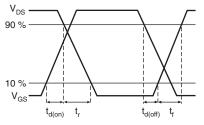
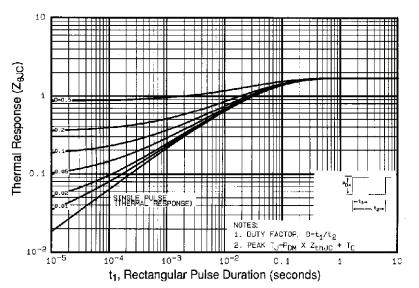
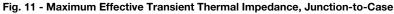
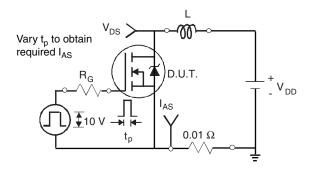





Fig. 10b - Switching Time Waveforms

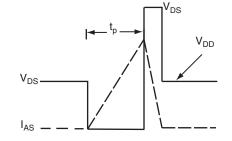


Fig. 12a - Unclamped Inductive Test Circuit

S21-1045-Rev. C, 25-Oct-2021

5 For technical questions, contact: <u>hvm@vishay.com</u>

Fig. 12b - Unclamped Inductive Waveforms
Document Number: 91290

ishay.com

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

IRFZ34 Vishay Siliconix

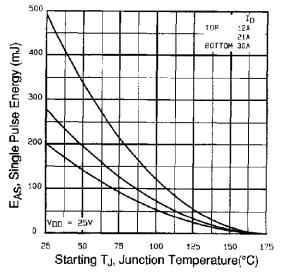


Fig. 12c - Maximum Avalanche Energy vs. Drain Current

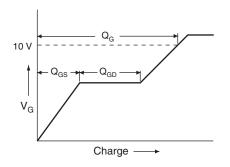


Fig. 13a - Basic Gate Charge Waveform

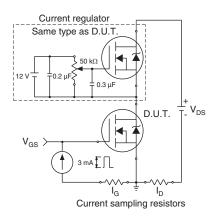
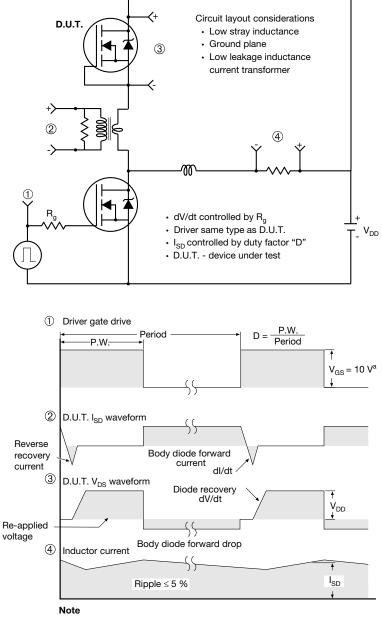



Fig. 13b - Gate Charge Test

Peak Diode Recovery dV/dt Test Circuit

a. $V_{GS} = 5 V$ for logic level devices

Fig. 14 - For N-Channel

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?91290.

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Vishay products are not designed for use in life-saving or life-sustaining applications or any application in which the failure of the Vishay product could result in personal injury or death unless specifically qualified in writing by Vishay. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

© 2025 VISHAY INTERTECHNOLOGY, INC. ALL RIGHTS RESERVED

Revision: 01-Jan-2025

1