Power MOSFET

IRFZ44, SiHFZ44

Vishay Siliconix

FEATURES
- Dynamic dV/dt Rating
- 175 °C Operating Temperature
- Fast Switching
- Ease of Paralleling
- Simple Drive Requirements
- Compliant to RoHS Directive 2002/95/EC

DESCRIPTION
Third generation Power MOSFETs from Vishay provide the designer with the best combination of fast switching, ruggedized device design, low on-resistance and cost-effectiveness. The TO-220AB package is universally preferred for commercial-industrial applications at power dissipation levels to approximately 50 W. The low thermal resistance and low package cost of the TO-220AB contribute to its wide acceptance throughout the industry.

ORDERING INFORMATION

<table>
<thead>
<tr>
<th>Package</th>
<th>TO-220AB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead (Pb)-free</td>
<td>IRFZ44PbF</td>
</tr>
<tr>
<td>SnPb</td>
<td>IRFZ44</td>
</tr>
</tbody>
</table>

PRODUCT SUMMARY

<table>
<thead>
<tr>
<th>Feature</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>VDS (V)</td>
<td>60</td>
</tr>
<tr>
<td>RDS(on) (Ω)</td>
<td>VGS = 10 V</td>
</tr>
<tr>
<td>Qg (Max.) (nC)</td>
<td>67</td>
</tr>
<tr>
<td>Qgs (nC)</td>
<td>18</td>
</tr>
<tr>
<td>Qgd (nC)</td>
<td>25</td>
</tr>
<tr>
<td>Configuration</td>
<td>Single</td>
</tr>
</tbody>
</table>

ABSOLUTE MAXIMUM RATINGS (TC = 25 °C, unless otherwise noted)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>SYMBOL</th>
<th>LIMIT</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain-Source Voltage</td>
<td>VDS</td>
<td>60</td>
<td>V</td>
</tr>
<tr>
<td>Gate-Source Voltage</td>
<td>VGS</td>
<td>± 20</td>
<td>V</td>
</tr>
<tr>
<td>Continuous Drain Currenta</td>
<td>VGS at 10 V</td>
<td>Tc = 25 °C</td>
<td>ID</td>
</tr>
<tr>
<td>Continuous Drain Current</td>
<td>VGS at 100 °C</td>
<td>Tc = 100 °C</td>
<td>ID</td>
</tr>
<tr>
<td>Pulsed Drain Currenta a</td>
<td>VOM</td>
<td>200</td>
<td>A</td>
</tr>
<tr>
<td>Linear Derating Factor</td>
<td></td>
<td>1.0</td>
<td>W/°C</td>
</tr>
<tr>
<td>Single Pulse Avalanche Energy b</td>
<td>EAS</td>
<td>100</td>
<td>mJ</td>
</tr>
<tr>
<td>Maximum Power Dissipation</td>
<td>TP</td>
<td>150</td>
<td>W</td>
</tr>
<tr>
<td>Peak Diode Recovery dv/dtc</td>
<td>dV/dt</td>
<td>4.5</td>
<td>V/ns</td>
</tr>
<tr>
<td>Operating Junction and Storage Temperature Range</td>
<td>Tj , Tstg</td>
<td>55 to + 175 °C</td>
<td>300</td>
</tr>
<tr>
<td>Soldering Recommendations (Peak Temperature) d</td>
<td></td>
<td>10</td>
<td>lbf · in</td>
</tr>
<tr>
<td>Mounting Torque</td>
<td></td>
<td>1.1</td>
<td>N · m</td>
</tr>
</tbody>
</table>

Notes
- Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11).
- VDD = 25 V, starting Tj = 25 °C, L = 44 μH, Rg = 25 Ω, IAS = 51 A (see fig. 12).
- ISG ≤ 51 A, dI/dt ≤ 250 A/μs, VDS, Tj ≤ 175 °C.
- 1.6 mm from case.
- Current limited by the package, (die current = 51 A).

* Pb containing terminations are not RoHS compliant, exemptions may apply

Document Number: 91291
S11-0517-Rev. B, 21-Mar-11

This datasheet is subject to change without notice.

THE PRODUCT DESCRIBED HEREIN AND THIS DATASHEET ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
THERMAL RESISTANCE RATINGS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>TYP.</th>
<th>MAX.</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Junction-to-Ambient</td>
<td>R_{thJA}</td>
<td>-</td>
<td>62</td>
<td>°C/W</td>
</tr>
<tr>
<td>Case-to-Sink, Flat, Greased Surface</td>
<td>R_{thCS}</td>
<td>0.50</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Maximum Junction-to-Case (Drain)</td>
<td>R_{thJC}</td>
<td>-</td>
<td>1.0</td>
<td></td>
</tr>
</tbody>
</table>

SPECIFICATIONS ($T_J = 25 \, ^\circ C$, unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>TEST CONDITIONS</th>
<th>MIN.</th>
<th>TYP.</th>
<th>MAX.</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drain-Source Breakdown Voltage</td>
<td>V_{DS}</td>
<td>$V_{GS} = 0 , V$, $I_D = 250 , \mu A$</td>
<td>60</td>
<td>-</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td>V_{DS} Temperature Coefficient</td>
<td>$\Delta V_{DS}/T_J$</td>
<td>Reference to $25 , ^\circ C$, $I_D = 1 , mA$</td>
<td>-</td>
<td>0.060</td>
<td>-</td>
<td>V/°C</td>
</tr>
<tr>
<td>Gate-Source Threshold Voltage</td>
<td>$V_{GS(th)}$</td>
<td>$V_{DS} = V_{GS}$, $I_D = 250 , \mu A$</td>
<td>2.0</td>
<td>-</td>
<td>4.0</td>
<td>V</td>
</tr>
<tr>
<td>Gate-Source Leakage</td>
<td>I_{GS}</td>
<td>$V_{GS} = \pm 20 , V$</td>
<td>-</td>
<td>-</td>
<td>±100</td>
<td>nA</td>
</tr>
<tr>
<td>Zero Gate Voltage Drain Current</td>
<td>I_{DS}</td>
<td>$V_{DS} = 60 , V$, $V_{GS} = 0 , V$</td>
<td>-</td>
<td>-</td>
<td>25</td>
<td>μA</td>
</tr>
<tr>
<td>Drain-Source On-State Resistance</td>
<td>$R_{DS(on)}$</td>
<td>$V_{GS} = 10 , V$, $I_D = 31 , A^a$</td>
<td>-</td>
<td>-</td>
<td>0.028</td>
<td>Ω</td>
</tr>
<tr>
<td>Forward Transconductance</td>
<td>g_f</td>
<td>$V_{DS} = 25 , V$, $I_D = 31 , A$</td>
<td>15</td>
<td>-</td>
<td>-</td>
<td>S</td>
</tr>
<tr>
<td>Dynamic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Capacitance</td>
<td>C_{iss}</td>
<td>$V_{GS} = 0 , V$, $V_{DS} = 25 , V$, $f = 1.0 , MHz$, see fig. 5</td>
<td>-</td>
<td>1900</td>
<td>-</td>
<td>pF</td>
</tr>
<tr>
<td>Output Capacitance</td>
<td>C_{oss}</td>
<td>-</td>
<td>920</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reverse Transfer Capacitance</td>
<td>C_{rss}</td>
<td>-</td>
<td>170</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Gate Charge</td>
<td>Q_g</td>
<td>$V_{GS} = 10 , V$</td>
<td>$I_D = 51 , A$, $V_{DS} = 48 , V$, see fig. 6 and 13b</td>
<td>-</td>
<td>-</td>
<td>67</td>
</tr>
<tr>
<td>Gate-Source Charge</td>
<td>Q_{gs}</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Gate-Drain Charge</td>
<td>Q_{gd}</td>
<td>-</td>
<td>-</td>
<td>67</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Turn-On Delay Time</td>
<td>$t_{d(on)}$</td>
<td>$V_{DD} = 30 , V$, $I_D = 51 , A$, $R_g = 9.1 , \Omega$, $R_0 = 0.55 , \Omega$, see fig. 10b</td>
<td>-</td>
<td>-</td>
<td>14</td>
<td>ns</td>
</tr>
<tr>
<td>Rise Time</td>
<td>t_i</td>
<td>$V_{DD} = 30 , V$, $I_D = 51 , A$, $R_g = 9.1 , \Omega$, $R_0 = 0.55 , \Omega$, see fig. 10b</td>
<td>-</td>
<td>-</td>
<td>110</td>
<td>-</td>
</tr>
<tr>
<td>Turn-Off Delay Time</td>
<td>$t_{d(off)}$</td>
<td>-</td>
<td>-</td>
<td>45</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Fall Time</td>
<td>t_f</td>
<td>-</td>
<td>92</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Internal Drain Inductance</td>
<td>L_D</td>
<td>Between lead, 6 mm (0.25") from package and center of die contact</td>
<td>-</td>
<td>4.5</td>
<td>-</td>
<td>nH</td>
</tr>
<tr>
<td>Internal Source Inductance</td>
<td>L_S</td>
<td>-</td>
<td>7.5</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drain-Source Body Diode Characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continuous Source-Drain Diode Current</td>
<td>I_S</td>
<td>MOSFET symbol showing the integral reverse p-n junction diode</td>
<td>-</td>
<td>-</td>
<td>50</td>
<td>A</td>
</tr>
<tr>
<td>Pulsed Diode Forward Currenta</td>
<td>I_{SM}</td>
<td>-</td>
<td>-</td>
<td>200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Body Diode Voltage</td>
<td>V_{SD}</td>
<td>$T_J = 25 , ^\circ C$, $I_S = 51 , A$, $V_{GS} = 0 , V^b$</td>
<td>-</td>
<td>-</td>
<td>2.5</td>
<td>V</td>
</tr>
<tr>
<td>Body Diode Reverse Recovery Time</td>
<td>t_{rr}</td>
<td>$T_J = 25 , ^\circ C$, $I_F = 51 , A$, $dI/dt = 100 , A/\mu s$</td>
<td>-</td>
<td>120</td>
<td>180</td>
<td>ns</td>
</tr>
<tr>
<td>Body Diode Reverse Recovery Charge</td>
<td>Q_{rr}</td>
<td>-</td>
<td>0.53</td>
<td>0.80</td>
<td>nC</td>
<td></td>
</tr>
<tr>
<td>Forward Turn-On Time</td>
<td>t_{on}</td>
<td>Intrinsic turn-on time is negligible (turn-on is dominated by L_S and L_D)</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes

a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11).

b. Pulse width ≤ 300 μs; duty cycle ≤ 2 %.
TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

Fig. 1 Typical Output Characteristics, $T_C = 25$ °C

Fig. 2 - Typical Output Characteristics, $T_C = 175$ °C

Fig. 3 - Typical Transfer Characteristics

Fig. 4 - Normalized On-Resistance vs. Temperature
IRFZ44, SiHFZ44

Vishay Siliconix

Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage

Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage

Fig. 7 - Typical Source-Drain Diode Forward Voltage

Fig. 8 - Maximum Safe Operating Area
IRFZ44, SiHFZ44

Vishay Siliconix

Fig. 9 - Maximum Drain Current vs. Case Temperature

Fig. 10a - Switching Time Test Circuit

Fig. 10b - Switching Time Waveforms

Fig. 11 - Maximum Effective Transient Thermal Impedance, Junction-to-Case

Fig. 12a - Unclamped Inductive Test Circuit

Fig. 12b - Unclamped Inductive Waveforms

Pulse width ≥ 1 µs
Duty factor ≤ 0.1 %

R_D
V_GS
R_G
D.U.T.
10 V

V_GS
V_D,
90 %
10 %

V_D,

V_D,
IRFZ44, SiHFZ44

Vishay Siliconix

This datasheet is subject to change without notice.

THE PRODUCT DESCRIBED HEREIN AND THIS DATASHEET ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
Peak Diode Recovery dV/dt Test Circuit

Circuit layout considerations
- Low stray inductance
- Ground plane
- Low leakage inductance current transformer

- dV/dt controlled by R_g
- Driver same type as D.U.T.
- I_{SD} controlled by duty factor “D”
- D.U.T. - device under test

① Driver gate drive

② D.U.T. I_{SD} waveform
Reverse recovery current

③ D.U.T. V_{GS} waveform
Body diode forward current

④ Inductor current
Diode recovery dV/dt

Note
a. V_{GS} = 5 V for logic level devices

Fig. 14 - For N-Channel

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg/91291.
TO-220-1

Note
- $M^* = 0.052$ inches to 0.064 inches (dimension including protrusion), heatsink hole for HVM

Package Picture

<table>
<thead>
<tr>
<th>DIM.</th>
<th>MILLIMETERS</th>
<th>INCHES</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>4.24</td>
<td>0.167</td>
</tr>
<tr>
<td>b</td>
<td>0.69</td>
<td>0.027</td>
</tr>
<tr>
<td>b(1)</td>
<td>1.14</td>
<td>0.045</td>
</tr>
<tr>
<td>c</td>
<td>0.36</td>
<td>0.014</td>
</tr>
<tr>
<td>D</td>
<td>14.33</td>
<td>0.564</td>
</tr>
<tr>
<td>E</td>
<td>9.96</td>
<td>0.392</td>
</tr>
<tr>
<td>e</td>
<td>2.41</td>
<td>0.095</td>
</tr>
<tr>
<td>e(1)</td>
<td>4.88</td>
<td>0.192</td>
</tr>
<tr>
<td>F</td>
<td>1.14</td>
<td>0.045</td>
</tr>
<tr>
<td>H(1)</td>
<td>6.10</td>
<td>0.240</td>
</tr>
<tr>
<td>J(1)</td>
<td>2.41</td>
<td>0.095</td>
</tr>
<tr>
<td>L</td>
<td>13.36</td>
<td>0.526</td>
</tr>
<tr>
<td>L(1)</td>
<td>3.33</td>
<td>0.131</td>
</tr>
<tr>
<td>Ω P</td>
<td>3.53</td>
<td>0.139</td>
</tr>
<tr>
<td>Q</td>
<td>2.54</td>
<td>0.100</td>
</tr>
</tbody>
</table>

ECN: X15-0364-Rev. C, 14-Dec-15

DWG: 6031

For technical questions, contact: hvm@vishay.com

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay’s knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer’s responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer’s technical experts. Product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.