
R-C Thermal Model Parameters

DESCRIPTION

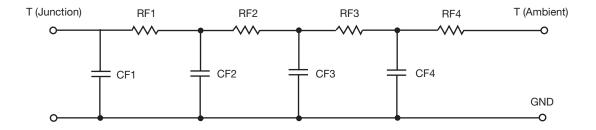
The parametric values in the R-C thermal model have been derived using curve-fitting techniques. R-C values for the electrical circuit in the Foster/tank and Cauer/filter configurations are included. When implemented in PSpice, these values have matching characteristic curves to the single-pulse transient thermal impedance curves for the MOSFET.

These RC values can be used in the PSpice simulation to evaluate the thermal behavior of the MOSFET junction temperature under a defined power profile. These techniques are described in application note AN609, "Thermal Simulation of Power MOSFETs on the PSpice Platform".

R-C THERMAL MODEL FOR TANK CONFIGURATION

R-C VALUES FOR TANK CONFIGURATION					
THERMAL RESISTANCE (°C/W)					
Junction to	Ambient	Case	Foot		
RT1	n/a	42.7770m	n/a		
RT2	n/a	63.5712m	n/a		
RT3	n/a	353.3086m	n/a		
RT4	n/a	240.3432m	n/a		
	THERMAL CAPAC	CITANCE (Joules/°C)			
Junction to	Ambient	Case	Foot		
CT1	n/a	67.9642m	n/a		
CT2	n/a	2.6422m	n/a		
CT3	n/a	73.2436m	n/a		
CT4	n/a	15.9001m	n/a		

Note


n/a indicates not applicable

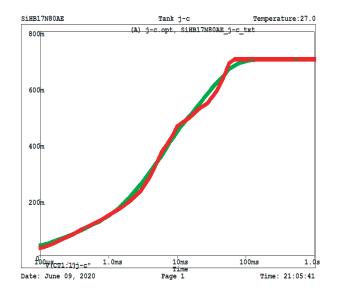
This document is intended as a SPICE modeling guideline and does not constitute a commercial product datasheet. Designers should refer to the appropriate datasheet of the same number for guaranteed specification limits.

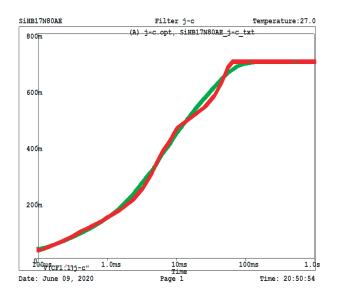
Revision: 15-Jun-2020 1 Document Number: 92356

R-C THERMAL MODEL FOR FILTER CONFIGURATION

-C VALUES FOR FILTER CONFIGURATION THERMAL RESISTANCE (°C/W)					
RF1	n/a	111.9788m	n/a		
RF2	n/a	340.4747m	n/a		
RF3	n/a	203.9680m	n/a		
RF4	n/a	43.5785m	n/a		
	THERMAL CAPAC	ITANCE (Joules/°C)			
Junction to	Ambient	Case	Foot		
CF1	n/a	2.6760m	n/a		
CF2	n/a	9.8292m	n/a		
CF3	n/a	87.8505m	n/a		
CF4	n/a	6.0494m	n/a		

Note


• n/a indicates not applicable



www.vishay.com

Vishay Siliconix

