Vishay Semiconductors

High Performance Schottky Rectifier, 1.0 A

www.vishay.com

SMB (DO-214AA)

PRIMARY CHARACTERISTICS					
I _{F(AV)}	1.0 A				
V _R	15 V				
V _F at I _F	0.21 V				
I _{RM}	35 mA at 100 °C				
T _J max.	125 °C				
E _{AS}	1.0 mJ				
Package	SMB (DO-214AA)				
Circuit configuration	Single				

FEATURES

- Low forward voltage drop
- Guard ring for enhanced ruggedness and long term reliability
- 125 °C T_J operation ($V_R < 5 V$)
- · Optimized for OR-ing applications
- High frequency operation
- High purity, high temperature epoxy encapsulation for enhanced mechanical strength and moisture resistance
- Meets MSL level 1, per J-STD-020, LF maximum peak of 260 °C
- Meets JESD 201 class 2 whisker test
- AEC-Q101 qualified
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

DESCRIPTION / APPLICATIONS

The VS-10BQ015HM3 surface mount Schottky rectifier has been designed for applications requiring low forward drop and very small foot prints on PC boards. The proprietary barrier technology allows for reliable operation up to 125 °C junction temperature. Typical applications are in disk drives, switching power supplies, converters, freewheeling diodes, battery charging, and reverse battery protection.

MAJOR RATINGS AND CHARACTERISTICS						
SYMBOL	CHARACTERISTICS	VALUES	UNITS			
I _{F(AV)}	Rectangular waveform	1.0	А			
V _{RRM}		15	V			
I _{FSM}	t _p = 5 μs sine	140	А			
V _F	1.0 A _{pk} , T _J = 125 °C	0.21	V			
TJ	Range	-55 to +125	°C			

VOLTAGE RATINGS						
PARAMETER	SYMBOL	VS-10BQ015HM3	UNITS			
Maximum DC reverse voltage	V _R	15	V			
Maximum working peak reverse voltage	V _{RWM}	25	V			

ABSOLUTE MAXIMUM RATINGS						
PARAMETER	SYMBOL	TEST COND	TEST CONDITIONS		UNITS	
Maximum average forward current See fig. 5	I _{F(AV)}	50 % duty cycle at T_L = 134 °C	, rectangular waveform	1.0	А	
Maximum peak one cycle		5 µs sine or 3 µs rect. pulse	Following any rated load	140		
non-repetitive surge current See fig. 7	I _{FSM}	10 ms sine or 6 ms rect. pulse	condition and with rated V _{RRM} applied	40	A	
Non-repetitive avalanche energy	E _{AS}	T _J = 25 °C, I _{AS} = 1 A, L = 2 mH		1.0	mJ	
Repetitive avalanche current	I _{AR}	Current decaying linearly to zero in 1 μs Frequency limited by T_J maximum V_A = 1.5 x V_R typical		1.0	А	

Revision: 29-Jan-2025 1 Document Number: 95722 For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

www.vishay.com

Vishay Semiconductors

ELECTRICAL SPECIFICATIONS						
PARAMETER	SYMBOL	TEST CO	VALUES	UNITS		
	V _{FM} ⁽¹⁾	1 A	T _{.1} = 25 °C	0.33	V	
Maximum forward voltage drop See fig. 1		2 A	1j=25 C	0.39		
		1 A	T _{.1} = 125 °C	0.21		
		2 A	1j = 125 C	0.29		
Maximum reverse leakage current	I _{RM}	T _J = 25 °C	$V_{\rm B}$ = Rated $V_{\rm B}$	0.5	mA	
See fig. 2		T _J = 100 °C	V _R = naleu V _R	35		
Threshold voltage	V _{F(TO)}		-	V		
Forward slope resistance	r _t	$T_J = T_J maximum$	-	mΩ		
Typical junction capacitance	CT	$V_R = 5 V_{DC}$, (test signal ran	390	pF		
Typical series inductance	Ls	Measured lead to lead 5 n	2.0	nH		
Maximum voltage rate of change	dV/dt	Rated V _R 10 0			V/µs	

Note

 $^{(1)}\,$ Pulse width = 300 $\mu s,$ duty cycle = 2 %

THERMAL - MECHANICAL SPECIFICATIONS						
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS		
Maximum junction temperature range	T _J ⁽¹⁾		-55 to +125	°C		
Maximum storage temperature range	T _{Stg}		-55 to +150	C		
Maximum thermal resistance, junction to lead	R _{thJL} ⁽²⁾	DC operation See fig. 4	36	°C/W		
Maximum thermal resistance, junction to ambient	R _{thJA}	DC operation	80	0/14		
Approximate weight			0.10	g		
Approximate weight			0.003	oz.		
Marking device		Case style SMB (DO-214AA)	1	С		

Notes

 $\frac{dP_{tot}}{dT_J} < \frac{1}{R_{thJA}}$ thermal runaway condition for a diode on its own heatsink (1)

(2) Mounted 1" square PCB

VS-10BQ015HM3

Vishay Semiconductors

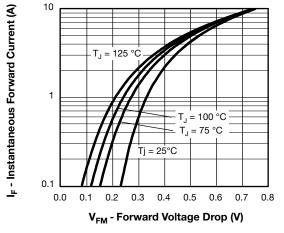


Fig. 1 - Maximum Forward Voltage Drop Characteristics

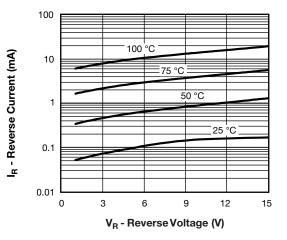


Fig. 2 - Typical Peak Reverse Current vs. Reverse Voltage

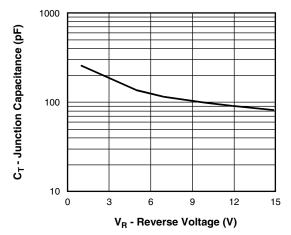
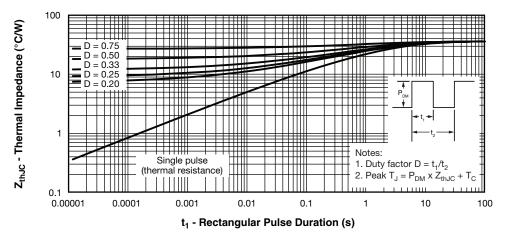
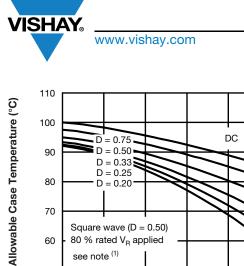
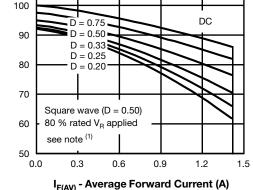
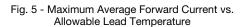


Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage


Fig. 4 - Maximum Thermal Impedance ZthJC Characteristics (Per Leg)


Revision: 29-Jan-2025 3 Document Number: 95722 For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

Vishay Semiconductors

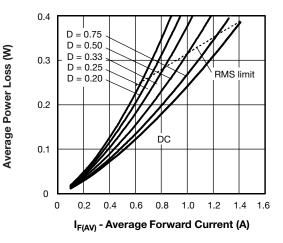


Fig. 6 - Maximum Average Forward Dissipation vs. Average Forward Current

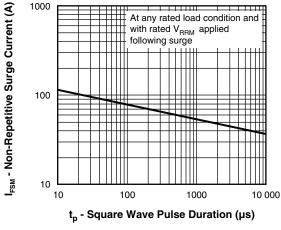


Fig. 7 - Maximum Non-Repetitive Surge Current

Note

- (1) Formula used: $T_C = T_J - (Pd + Pd_{REV}) \times R_{thJC}$;
- $\begin{array}{l} \mathsf{Pd} = \mathsf{Forward} \ \mathsf{power} \ \mathsf{loss} = \mathsf{I}_{\mathsf{F}(\mathsf{AV})} \times \mathsf{V}_{\mathsf{FM}} \ \mathsf{at} \ (\mathsf{I}_{\mathsf{F}(\mathsf{AV})}/\mathsf{D}) \ (\mathsf{see fig. 6}); \\ \mathsf{Pd}_{\mathsf{REV}} = \mathsf{Inverse} \ \mathsf{power} \ \mathsf{loss} = \mathsf{V}_{\mathsf{R1}} \times \mathsf{I}_{\mathsf{R}} \ (\mathsf{1} \mathsf{D}); \ \mathsf{I}_{\mathsf{R}} \ \mathsf{at} \ \mathsf{V}_{\mathsf{R1}} = \mathsf{80} \ \% \ \mathsf{rated} \ \mathsf{V}_{\mathsf{R}} \end{array}$

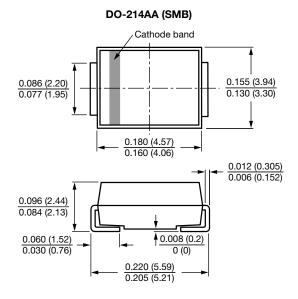
Vishay Semiconductors

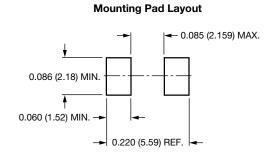
ORDERING INFORMATION TABLE

Device code	VS-	10	В	Q	015	Н	M3
		2	3	4	5	6	7
	1	- Visl	nay Sen	niconduc	ctors pro	oduct	
	2	- Cur	rent rati	ng			
	3	- В=	SMB				
	4	- Q =	Schott	ky "Q" se	eries		
	5	- Vol	tage rati	ng (015	= 15 V))	
	6	- Н=	AEC-Q	101 qua	lified		
	7	- Env	vironmer	ntal digit	:		
		М3	= halog	en-free,	RoHS of	compliar	nt and t

ORDERING INFORMATION (Example)						
PREFERRED P/N	PREFERRED PACKAGE CODE MINIMUM ORDER QUANTITY PACKAGING DESCRIPTION					
VS-10BQ015HM3/5BT	5BT	3200	13" diameter plastic tape and reel			

LINKS TO RELATED DOCUMENTS				
Dimensions	www.vishay.com/doc?95401			
Part marking information	www.vishay.com/doc?95403			
Packaging information	www.vishay.com/doc?95404			
SPICE model	www.vishay.com/doc?95666			




Outline Dimensions

Vishay Semiconductors

SMB

DIMENSIONS in inches (millimeters)

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Vishay products are not designed for use in life-saving or life-sustaining applications or any application in which the failure of the Vishay product could result in personal injury or death unless specifically qualified in writing by Vishay. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

© 2025 VISHAY INTERTECHNOLOGY, INC. ALL RIGHTS RESERVED

Revision: 01-Jan-2025

1