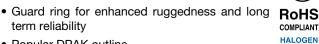

Vishay Semiconductors

FREE

High Performance Schottky Rectifier, 5.5 A

www.vishay.com



DPAK (TO-252AA)

PRIMARY CHARACTERISTICS				
I _{F(AV)}	5.5 A			
V _R	30 V			
V _F at I _F	See Electrical table			
I _{RM}	58 mA at 125 °C			
T _J max.	150 °C			
E _{AS}	10 mJ			
Package	DPAK (TO-252AA)			
Circuit configuration	Single			

FEATURES

Low forward voltage drop

- Popular DPAK outline
- · Small foot print, surface mountable
- High frequency operation
- Meets MSL level 1, per J-STD-020, LF maximum peak of 260 °C
- AEC-Q101 qualified, meets JESD 201 class 2 whisker test
- · Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

DESCRIPTION

The VS-50WQ03FNHM3 surface mount Schottky rectifier has been designed for applications requiring low forward drop and small foot prints on PC board. Typical applications are in disk drives, switching power supplies, converters, freewheeling diodes, battery charging, and reverse battery protection.

MAJOR RATINGS AND CHARACTERISTICS					
SYMBOL	CHARACTERISTICS	CHARACTERISTICS VALUES U			
I _{F(AV)}	Rectangular waveform	5.5	A		
V _{RRM}		30	V		
I _{FSM}	t _p = 5 μs sine	320	A		
V _F	5 A _{pk} , T _J = 125 °C	0.35	V		
TJ	Range	-40 to +150	°C		

VOLTAGE RATINGS				
PARAMETER	SYMBOL	VS-50WQ03FNHM3	UNITS	
Maximum DC reverse voltage	V _R	30	V	
Maximum working peak reverse voltage	V _{RWM}	30	v	

ABSOLUTE MAXIMUM RATINGS					
PARAMETER	SYMBOL	TEST CONDITIONS		VALUES	UNITS
Maximum average forward current See fig. 5	I _{F(AV)}	50 % duty cycle at T_C = 136 °C	, rectangular waveform	5.5	А
Maximum peak one cycle		5 µs sine or 3 µs rect. pulse	Following any rated load condition and with	320	A
non-repetitive surge current See fig. 7	IFSM	10 ms sine or 6 ms rect. pulse	rated V_{RRM} applied	130	~
Non-repetitive avalanche energy	E _{AS}	$T_J = 25 \text{ °C}, I_{AS} = 2 \text{ A}, L = 5 \text{ mH}$ 10		10	mJ
Repetitive avalanche current	I _{AR}	Current decaying linearly to zero in 1 μ s Frequency limited by T _J maximum V _A = 1.5 x V _R typical 2.0		А	

Revision: 03-Aug-2023 1 For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishav.com/doc?91000

www.vishay.com

Vishay Semiconductors

ELECTRICAL SPECIFICATIONS					
PARAMETER	SYMBOL	TEST CONDITIONS		VALUES	UNITS
		5 A	T 05 %C	0.46	V
Maximum forward voltage drop	V (1)	10 A	$T_J = 25 \ ^{\circ}C$	0.53	
See fig. 1	V _{FM} ⁽¹⁾	5 A	- T _J = 125 °C	0.35	
		10 A		0.46	
Maximum reverse leakage current	I _{RM} ⁽¹⁾	T _J = 25 °C	$V_{\rm B}$ = rated $V_{\rm B}$	3	mA
See fig. 2	IRM \	T _J = 125 °C	$v_{\rm R} = rateu v_{\rm R}$	58	ША
Threshold voltage	V _{F(TO)}	$T_{\rm J} = T_{\rm J}$ maximum 0.19 22.22 r		0.19	V
Forward slope resistance	r _t			mΩ	
Typical junction capacitance	CT	$V_{\rm R}$ = 5 $V_{\rm DC}$ (test signal range 100 kHz to 1 MHz), 25 °C 590		pF	
Typical series inductance	L _S	Measured lead to lead 5 mm from package body 5.0 nH		nH	

Note

 $^{(1)}\,$ Pulse width < 300 $\mu s,$ duty cycle < 2 $\,\%$

THERMAL - MECHANICAL SPECIFICATIONS				
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS
Maximum junction and storage temperature range	T _J ⁽¹⁾ , T _{Stg}		-40 to +150	°C
Maximum thermal resistance, junction to case	R _{thJC}	DC operation See fig. 4	3.0	°C/W
Approximate weight			0.3	g
Approximate weight			0.01	oz.
Marking device		Case style DPAK (TO-252AA)	50WQ0	D3FNH

Note

⁽¹⁾ $\frac{dP_{tot}}{dT_J} < \frac{1}{R_{thJA}}$ thermal runaway condition for a diode on its own heatsink

VS-50WQ03FNHM3

Vishay Semiconductors

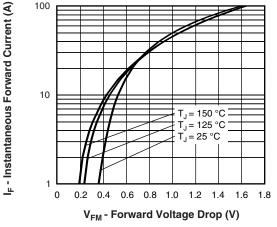


Fig. 1 - Maximum Forward Voltage Drop Characteristics

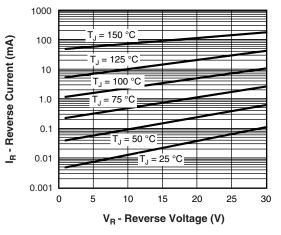
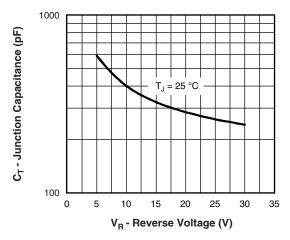
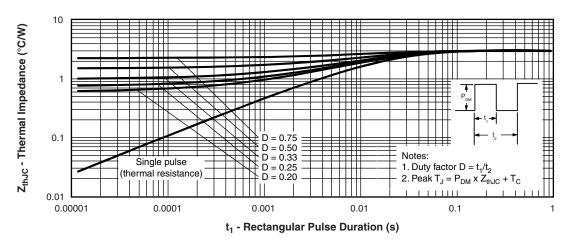
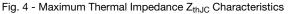
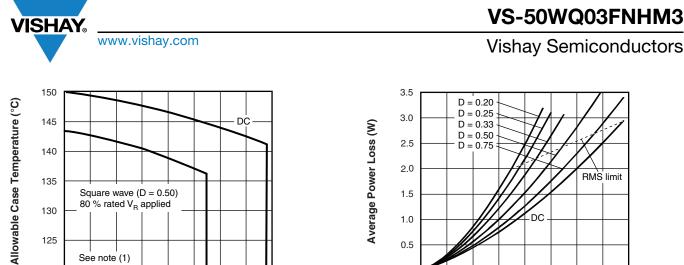


Fig. 2 - Typical Values of Reverse Current vs. Reverse Voltage


Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage

 Revision: 03-Aug-2023
 3
 Document Number: 95860

 For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com
 THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

4 I_{F(AV)} - Average Forward Current (A)

5 6 7 8

See note (1)

2 3

120

0 1

Fig. 5 - Maximum Allowable Case Temperature vs. Average Forward Current

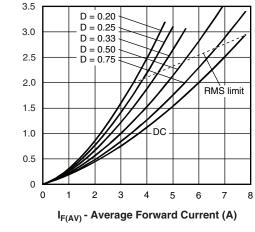


Fig. 6 - Forward Power Loss Characteristics

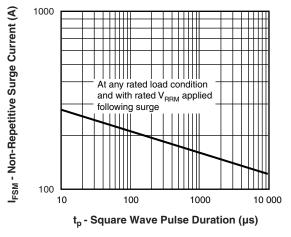
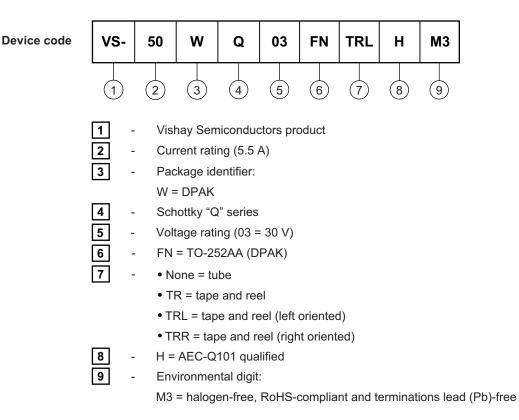


Fig. 7 - Maximum Non-Repetitive Surge Current


Note

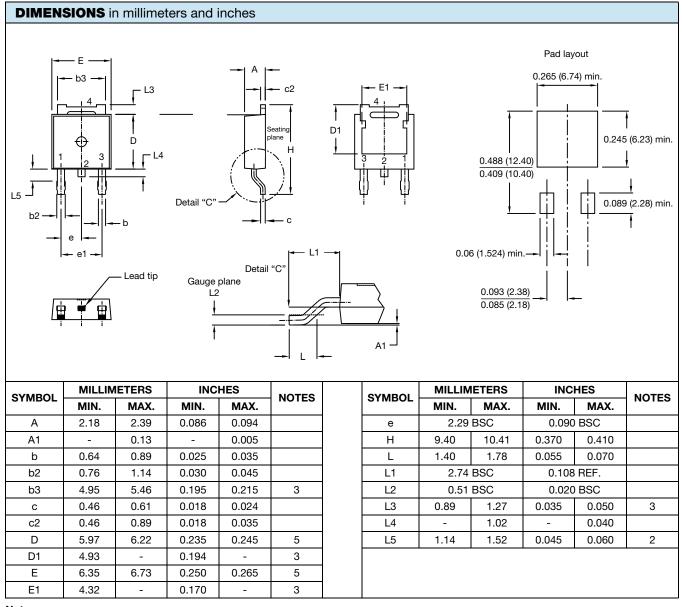
⁽¹⁾ Formula used: $T_C = T_J - (Pd + Pd_{REV}) \times R_{thJC}$; $\begin{array}{l} \mathsf{Pd} = \mathsf{forward} \ \mathsf{power} \ \mathsf{loss} = \mathsf{I}_{\mathsf{F}(\mathsf{AV})} \times \mathsf{V}_{\mathsf{FM}} \ \mathsf{at} \ (\mathsf{I}_{\mathsf{F}(\mathsf{AV})}/\mathsf{D}) \ (\mathsf{see fig. 6}); \\ \mathsf{Pd}_{\mathsf{REV}} = \mathsf{inverse} \ \mathsf{power} \ \mathsf{loss} = \mathsf{V}_{\mathsf{R1}} \times \mathsf{I}_{\mathsf{R}} \ (\mathsf{I} - \mathsf{D}); \ \mathsf{I}_{\mathsf{R}} \ \mathsf{at} \ \mathsf{V}_{\mathsf{R1}} = \mathsf{80} \ \% \ \mathsf{rated} \ \mathsf{V}_{\mathsf{R}} \end{array}$

Vishay Semiconductors

ORDERING INFORMATION TABLE

www.vishay.com

ORDERING INFORMATION (Example)					
PREFERRED P/N	QUANTITY PER T/R	MINIMUM ORDER QUANTITY	PACKAGING DESCRIPTION		
VS-50WQ03FNHM3	75	3000	Antistatic plastic tube		
VS-50WQ03FNTRHM3	2000	2000	13" diameter reel		
VS-50WQ03FNTRLHM3	3000	3000	13" diameter reel		
VS-50WQ03FNTRRHM3	3000	3000	13" diameter reel		


LINKS TO RELATED DOCUMENTS			
Dimensions <u>www.vishay.com/doc?95519</u>			
Part marking information	www.vishay.com/doc?95518		
Packaging information	www.vishay.com/doc?95033		

Outline Dimensions

Vishay Semiconductors

DPAK (TO-252AA)

Notes

⁽¹⁾ Dimensioning and tolerancing as per ASME Y14.5M-1994

⁽²⁾ Lead dimension uncontrolled in L5

⁽³⁾ Dimension D1, E1, L3 and b3 establish a minimum mounting surface for thermal pad

(4) Dimensions D and E do not include mold flash. Mold flash shall not exceed 0.127 mm (0.005") per side. These dimensions are measured at the outermost extremes of the plastic body

⁽⁵⁾ Outline conforms to JEDEC[®] outline TO-252AA, except for D1 dimension

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Vishay products are not designed for use in life-saving or life-sustaining applications or any application in which the failure of the Vishay product could result in personal injury or death unless specifically qualified in writing by Vishay. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

© 2025 VISHAY INTERTECHNOLOGY, INC. ALL RIGHTS RESERVED

Revision: 01-Jan-2025

1