
www.vishay.com

VS-40CTQ150SHM3, VS-40CTQ150-1HM3

Vishay Semiconductors

High Performance Schottky Rectifier, 2 x 20 A

Common 👌 3 10 Common 0 3 Anode cathode Anode Anode cathode Anode

VS-40CTQ150SHM3

10

VS-40CTQ150-1HM3

PRIMARY CHARACTERISTICS				
I _{F(AV)}	2 x 20 A			
V _R	150 V			
V _F at I _F	0.71 V			
I _{RM}	15 mA at 125 °C			
T _J max.	175 °C			
E _{AS}	1 mJ			
Package	D ² PAK (TO-263AB), TO-262AA			
Circuit configuration	Common cathode			

FEATURES

- Very low forward voltage drop
- 175 °C T_J operation
- Center tap TO-220 package
- High frequency operation
- High purity, high temperature epoxy encapsulation for enhanced mechanical strength and moisture resistance
- · Guard ring for enhanced ruggedness and long term reliability
- Meets MSL level 1, per J-STD-020, LF maximum peak of 245 °C
- Meet JESD 201 class 1 whisker test
- AEC-Q101 gualified
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

DESCRIPTION

The VS-40CTQ... center tap Schottky rectifier has been optimized for very low forward voltage drop, with moderate leakage. The proprietary barrier technology allows for reliable operation up to 175 °C junction temperature. Typical applications are in switching power supplies, converters, freewheeling diodes, and reverse battery protection.

MAJOR RATINGS AND CHARACTERISTICS							
SYMBOL	CHARACTERISTICS	VALUES	UNITS				
I _{F(AV)}	Rectangular waveform	40	A				
V _{RRM}		150	V				
I _{FSM}	t _p = 5 μs sine	1500	А				
V _F	$20 \text{ A}_{\text{pk}}, \text{ T}_{\text{J}} = 125 \text{ °C} \text{ (per leg)}$	0.71	V				
TJ		-55 to +175	°C				

VOLTAGE RATINGS						
PARAMETER	VS-40CTQ150SHM3 VS-40CTQ150-1HM3	UNITS				
Maximum DC reverse voltage	V _R	150	V			
Maximum working peak reverse voltage	V _{RWM}	150	v			

Revision: 22-Sep-17 Document Number: 96382 1 For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishav.com/doc?91000

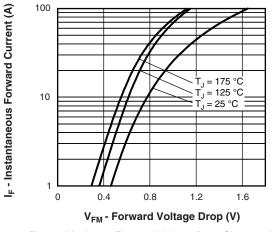
COMPLIANT HALOGEN FREE

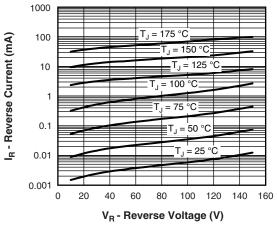
Vishay Semiconductors

ABSOLUTE MAXIMUM RATINGS								
PARAMETER	SYMBOL	TEST COND	TEST CONDITIONS		UNITS			
Maximum average forward per leg	Iran	50 % duty cycle at Ta – 140 °	50 % duty cycle at T_{C} = 140 °C, rectangular waveform					
current, see fig. 5 per device	I _{F(AV)}		40					
		5 µs sine or 3 µs rect. pulse	Following any rated load condition and	1500	A			
Maximum peak one cycle non-repetitive surge current per leg, see fig. 7	I _{FSM}	10 ms sine or 6 ms rect. pulse	with rated V _{RRM}	250				
Non-repetitive avalanche energy per leg	E _{AS}	T _J = 25 °C, I _{AS} = 1.5 A, L = 0.9 mH		1.0	mJ			
Repetitive avalanche current per leg	I _{AR}	Current decaying linearly to zero in 1 μ s Frequency limited by T _J maximum V _A = 1.5 x V _R typical		1.5	А			

ELECTRICAL SPECIFICATIONS									
PARAMETER	SYMBOL	TEST CO	NDITIONS	VALUES	UNITS				
Maximum forward voltage drop per leg See fig. 1		20 A	T 05 %C	0.93					
	V (1)	40 A	T _J = 25 °C	1.16	v				
	V _{FM} ⁽¹⁾	20 A		0.71					
		40 A	T _J = 125 °C	0.85					
Maximum reverse leakage current per leg	. (1)	T _J = 25 °C		50	μA				
See fig. 2	I _{RM} ⁽¹⁾	T _J = 125 °C	V _R = Rated V _R	15	mA				
Maximum junction capacitance per leg	CT	$V_{R} = 5 V_{DC}$ (test signal range	ge 100 kHz to 1 MHz), 25 °C	450	pF				
Typical series inductance per leg	L _S	Measured lead to lead 5 mm from package body		8.0	nH				
Maximum voltage rate of change	dV/dt	Rated V _R	10 000	V/µs					

Note


⁽¹⁾ Pulse width < 300 μ s, duty cycle < 2 %


THERMAL - MECHANICAL SPECIFICATIONS								
PARAMETER SYMBOL TEST CO		TEST CONDITIONS	VALUES	UNITS				
Maximum junction and storage temperature range	T _J , T _{Stg}		-55 to +175	°C				
Maximum thermal resistance, junction to case per leg	P	DC operation See fig. 4	1.5					
Maximum thermal resistance, junction to case per package	– R _{thJC}	DC operation	0.75	°C/W				
Typical thermal resistance, case to heatsink	R _{thCS}	Mounting surface, smooth and greased	0.5					
Approvimeto weight			2	g				
Approximate weight			0.07	oz.				
Marking daviag		Case style D ² PAK (TO-263AB)	40CTQ	150SH				
Marking device		Case style TO-262	40CTQ	150-1H				

VS-40CTQ150SHM3, VS-40CTQ150-1HM3

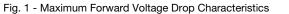


Fig. 2 - Typical Values of Reverse Current vs. Reverse Voltage

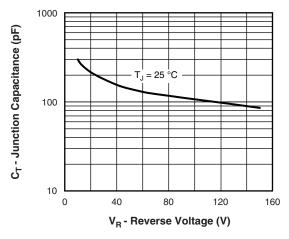


Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage

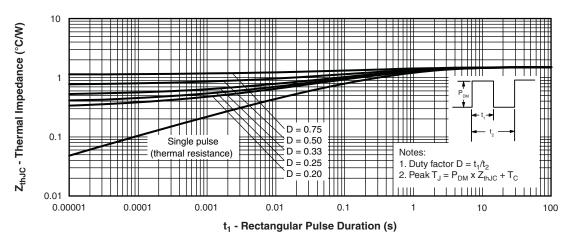
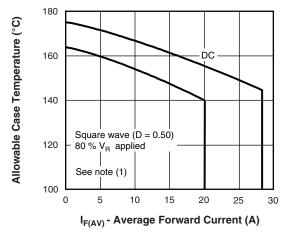
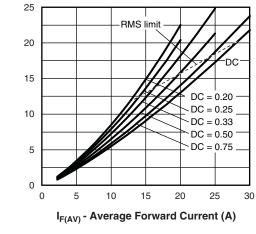


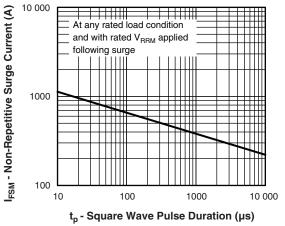
Fig. 4 - Maximum Thermal Impedance Z_{thJC} Characteristics


 Revision: 22-Sep-17
 3
 Document Number: 96382

 For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com
 THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000



VS-40CTQ150SHM3, VS-40CTQ150-1HM3


Vishay Semiconductors

Average Power Loss (W)

Fig. 7 - Maximum Non-Repetitive Surge Current (Per Leg)

Note

⁽¹⁾ Formula used: $T_C = T_J - (Pd + Pd_{REV}) \times R_{thJC}$;

 $\begin{array}{l} \mathsf{Pd} = \mathsf{forward} \ \mathsf{power} \ \mathsf{loss} = \mathsf{I}_{\mathsf{F}(\mathsf{AV})} \times \mathsf{V}_{\mathsf{FM}} \ \mathsf{at} \ (\mathsf{I}_{\mathsf{F}(\mathsf{AV})}/\mathsf{D}) \ (\mathsf{see} \ \mathsf{fig.} \ \mathsf{6}); \\ \mathsf{Pd}_{\mathsf{REV}} = \mathsf{inverse} \ \mathsf{power} \ \mathsf{loss} = \mathsf{V}_{\mathsf{R1}} \times \mathsf{I}_{\mathsf{R}} \ (\mathsf{1} - \mathsf{D}); \ \mathsf{I}_{\mathsf{R}} \ \mathsf{at} \ \mathsf{V}_{\mathsf{R1}} = \mathsf{80} \ \% \ \mathsf{V}_{\mathsf{R}} \ \mathsf{applied} \end{array}$

VS-40CTQ150SHM3, VS-40CTQ150-1HM3

Vishay Semiconductors

ORDERING INFORMATION TABLE

VS-	40	С	т	Q	150	S	TRL	н	М3
1	2	3	4	5	6	7	8	9	10
] -	Visł	nay Sem	niconduc	ctors pro	oduct				
- 1	- Current rating (40 A)								
- 1	Circ	Circuit configuration:							
	C =	C = common cathode							
- [T =	TO-220							
- 1	Sch	ottky "C	" series						
- 13	Volt	age rati	ng (150	= 150 \	/)				
- [• S	= D ² PA	K						
	• -1	= TO-2	62						
- 1	• N	one = tu	be (50 p	pieces)					
_	• TI								
	• TI								
- 1									
<u> </u>			•		complia	nt, and	termina	ition lea	ld (Pb)-fi
		1 2 1 2 - Vist - Cur - Circ C = - T = - Sch - Volt - Sch - 1 - Nu - TI - TI - H =	1 2 3 1 2 3 1 2 3 1 2 3 1 - Vishay Sem - Current rati - Circuit conf C = commo - T = TO-220 - Schottky "G - Voltage rati - Schottky "G - Voltage rati - S = D ² PA - None = tu • TRL = tap • TRR = tap • H = AEC-Q	1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 - Current rating (40 A) - Circuit configuration C C common cathod - - T = TO-220 - Schottky "Q" series - - Voltage rating (150 - S = D ² PAK - -1 = TO-262 - None = tube (50 p) - TRL = tape and registric - TRR = tape and registric - H = AEC-Q101 qual	1 2 3 4 5 - Vishay Semiconductors productors productors - Current rating (40 A) - Circuit configuration: C C - Circuit configuration: C C - T = TO-220 - Schottky "Q" series - Voltage rating (150 = 150 N) - - - S = D ² PAK - - - None = tube (50 pieces) - TRL = tape and reel (left - TRR = tape and reel (right) - H = AEC-Q101 qualified	1 2 3 4 5 6 - Vishay Semiconductors product - Current rating (40 A) - Circuit configuration: C = common cathode - T = TO-220 - Schottky "Q" series - Voltage rating (150 = 150 V) - S = D ² PAK • -1 = TO-262 - None = tube (50 pieces) • TRL = tape and reel (left oriented • TRR = tape and reel (right orient - H = AEC-Q101 qualified	1 2 3 4 5 6 7 - Vishay Semiconductors product - Current rating (40 A) - Circuit configuration: C = common cathode - T = TO-220 - Schottky "Q" series - Voltage rating (150 = 150 V) - S = D ² PAK -1 = TO-262 - None = tube (50 pieces) - TRL = tape and reel (left oriented - for D - TRR = tape and reel (right oriented - for D - H = AEC-Q101 qualified	1 2 3 4 5 6 7 8 - Vishay Semiconductors product - Current rating (40 A) - Circuit configuration: C = common cathode - T = TO-220 - Schottky "Q" series - Voltage rating (150 = 150 V) - S = D ² PAK -1 = TO-262 - None = tube (50 pieces) - TRL = tape and reel (left oriented - for D ² PAK o - TRR = tape and reel (right oriented - for D ² PAK - H = AEC-Q101 qualified	1 2 3 4 5 6 7 8 9 - Vishay Semiconductors product - Current rating (40 A) - Circuit configuration: C = common cathode - T = TO-220 - Schottky "Q" series - Voltage rating (150 = 150 V) - S = D ² PAK -1 = TO-262 - None = tube (50 pieces) - TRL = tape and reel (left oriented - for D ² PAK only) - TRR = tape and reel (right oriented - for D ² PAK only) - H = AEC-Q101 qualified

ORDERING INFORMATION (Example)								
PREFERRED P/N	QUANTITY PER T/R	MINIMUM ORDER QUANTITY	PACKAGING DESCRIPTION					
VS-40CTQ150SHM3	50	1000	Antistatic plastic tubes					
VS-40CTQ150STRLHM3	800	800	13" diameter reel					
VS-40CTQ150STRRHM3	800	800	13" diameter reel					
VS-40CTQ150-1HM3	50	1000	Antistatic plastic tubes					


LINKS TO RELATED DOCUMENTS					
Dimensions	D ² PAK (TO-263AB)	www.vishay.com/doc?96164			
Dimensions	TO-262AA	www.vishay.com/doc?96165			
	D ² PAK (TO-263AB)	www.vishay.com/doc?95444			
Part marking information	TO-262AA	www.vishay.com/doc?95443			
Packaging information		www.vishay.com/doc?95032			
SPICE model		www.vishay.com/doc?95434			

Revision: 22-Sep-17 Document Number: 96382 For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

Vishay Semiconductors

D²PAK

DIMENSIONS in millimeters and inches

ota	ted	90	°C
<u>S</u>	cale	<u>ə:</u> 8	:1

SYMBOL	MILLIM	ETERS	INC	HES	NOTES	
STMBOL	MIN.	MAX.	MIN.	MAX.	NOTES	
A	4.06	4.83	0.160	0.190		
A1	0.00	0.254	0.000	0.010		
b	0.51	0.99	0.020	0.039		
b1	0.51	0.89	0.020	0.035	4	
b2	1.14	1.78	0.045	0.070		
b3	1.14	1.73	0.045	0.068	4	
с	0.38	0.74	0.015	0.029		
c1	0.38	0.58	0.015	0.023	4	
c2	1.14	1.65	0.045	0.065		
D	8.51	9.65	0.335	0.380	2	

SYMBOL	MILLIM	ETERS	INC	NOTES	
STNDUL	MIN.	MAX.	MIN.	MAX.	NOTES
D1	6.86	8.00	0.270	0.315	3
E	9.65	10.67	0.380	0.420	2, 3
E1	7.90	8.80	0.311	0.346	3
е	2.54 BSC		0.100 BSC		
Н	14.61	15.88	0.575	0.625	
L	1.78	2.79	0.070	0.110	
L1	-	1.65	-	0.066	3
L2	1.27	1.78	0.050	0.070	
L3	0.25 BSC		0.010	BSC	
L4	4.78	5.28	0.188	0.208	

Notes

⁽¹⁾ Dimensioning and tolerancing per ASME Y14.5 M-1994

(2) Dimension D and E do not include mold flash. Mold flash shall not exceed 0.127 mm (0.005") per side. These dimensions are measured at the outmost extremes of the plastic body

(3) Thermal pad contour optional within dimension E, L1, D1 and E1

⁽⁴⁾ Dimension b1 and c1 apply to base metal only

(5) Datum A and B to be determined at datum plane H

(6) Controlling dimension: inches

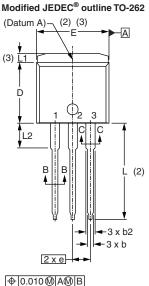
⁽⁷⁾ Outline conforms to JEDEC[®] outline TO-263AB

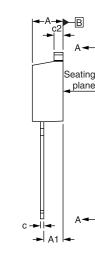
Revision: 13-Jul-17

1

Document Number: 96164

For technical questions within your region: DiodesAmericas@vishav.com, DiodesAsia@vishav.com, DiodesEurope@vishav.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishav.com/doc?91000


Outline Dimensions



Vishay Semiconductors

TO-262AA

DIMENSIONS in millimeters and inches

F D1 (3) (3) Section A - A Base (4) Plating b1. b3 metal ≰ c1 (4) -(b, b2)-Section B - B and C - C Scale: None

Diodes 1. - Anode (two die)/open (one die) 2., 4. - Cathode 3. - Anode

Lead assignments

SYMBOL	MILLIMETERS		INCHES		NOTEO
	MIN.	MAX.	MIN.	MAX.	NOTES
А	4.06	4.83	0.160	0.190	
A1	2.03	3.02	0.080	0.119	
b	0.51	0.99	0.020	0.039	
b1	0.51	0.89	0.020	0.035	4
b2	1.14	1.78	0.045	0.070	
b3	1.14	1.73	0.045	0.068	4
С	0.38	0.74	0.015	0.029	
c1	0.38	0.58	0.015	0.023	4
c2	1.14	1.65	0.045	0.065	
D	8.51	9.65	0.335	0.380	2
D1	6.86	8.00	0.270	0.315	3
E	9.65	10.67	0.380	0.420	2, 3
E1	7.90	8.80	0.311	0.346	3
е	2.54 BSC		0.100 BSC		
L	13.46	14.10	0.530	0.555	
L1	-	1.65	-	0.065	3
L2	3.56	3.71	0.140	0.146	

 ⁽¹⁾ Dimensioning and tolerancing as per ASME Y14.5M-1994
 ⁽²⁾ Dimension D and E do not include mold flash. Mold flash shall not exceed 0.127 mm (0.005") per side. These dimensions are measured at the second dimensioner of the second dimensis of the second dimensioner of the second dimensioner of the the outmost extremes of the plastic body (3)

Thermal pad contour optional within dimension E, L1, D1 and E1

⁽⁴⁾ Dimension b1 and c1 apply to base metal only (5)

Controlling dimension: inches

(6) Outline conform to JEDEC® TO-262 except A1 (max.), b (min., max.), b1 (min.), b2 (max.), c (min.), c1(min.), c2 (max.), D (min.), E (max.), L1 (max.), L2 (min., max.)

Revision: 30-Nov-17

1

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Vishay products are not designed for use in life-saving or life-sustaining applications or any application in which the failure of the Vishay product could result in personal injury or death unless specifically qualified in writing by Vishay. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

© 2025 VISHAY INTERTECHNOLOGY, INC. ALL RIGHTS RESERVED

Revision: 01-Jan-2025

1