Vishay Semiconductors

Insulated Gate Bipolar Transistor Ultralow V_{CE(on)}, 250 A

www.vishay.com

PRIMARY CHARACTERISTICS						
V _{CES}	600 V					
V _{CE(on)} (typical) at 200 A, 25 °C	1.16 V					
I _C at T _C = 90 °C	250 A					
Speed	DC to 1 kHz					
Package	SOT-227					
Circuit configuration	Single switch no diode					

FEATURES

- · Standard: optimized for minimum saturation voltage and low speed
- Lowest conduction losses available
- Fully isolated package (2500 V_{AC})
- Very low internal inductance (5 nH typical)
- · Industry standard outline
- · Designed and qualified for industrial level
- UL approved file E78996
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

BENEFITS

- Designed for increased operating efficiency in power conversion: UPS, SMPS, TIG welding, induction heating
- · Easy to assemble and parallel
- Direct mounting to heatsink
- · Plug-in compatible with other SOT-227 packages

ABSOLUTE MAXIMUM RATINGS					
PARAMETER	SYMBOL	TEST CONDITIONS	MAX.	UNITS	
Collector to emitter voltage	V _{CES}		600	V	
Continuous collector current I _C		T _C = 25 °C	359		
		T _C = 90 °C	250	_	
Pulsed collector current	I _{CM}	$T_{C} = 175 \text{ °C}, t_{p} = 6 \text{ ms}, V_{GE} = 15 \text{ V}$	945	A	
Clamped Inductive load current	I _{LM}		250		
Gate to emitter voltage	V _{GE}		± 20	V	
Power dissipation	P_	$T_{C} = 25 \ ^{\circ}C$	750	w	
	P _D	T _C = 90 °C	425	~ ~	
Isolation voltage	V _{ISOL}	Any terminal to case, t = 1 min	2500	V	

ELECTRICAL SPECIFICATIONS ($T_J = 25 \ ^{\circ}C$ unless otherwise noted)							
PARAMETER	SYMBOL	TEST CONDITI	ONS	MIN.	TYP.	MAX.	UNITS
Collector to emitter breakdown voltage	V _{(BR)CES}	$V_{GE} = 0 V, I_{C} = 0.4 mA$		600	-	-	
		I _C = 100 A		-	1.01	1.16	v
		I _C = 200 A		-	1.16	-	
Collector to omitter voltage		I _C = 100 A, T _J = 125 °C	V 15 V	-	0.96	-	
Collector to emitter voltage	V _{CE(on)}	I _C = 200 A, T _J = 125 °C		-	1.18	-	
		I _C = 100 A, T _J = 150 °C		-	0.95	-	
		I _C = 200 A, T _J = 150 °C		-	1.18	-	
	V	$V_{CE} = V_{GE}, I_C = 2 \text{ mA}$		3.8	4.9	6.3	
Gate threshold voltage	V _{GE(th)}	$V_{CE} = V_{GE}$, $I_C = 2$ mA, T	_J = 125 °C	-	3.5	-	
Temperature coefficient of threshold voltage	$\Delta V_{GE(th)} / \Delta T_J$	$V_{CE} = V_{GE}, I_C = 2 \text{ mA}, 28$	5 °C to 125 °C	-	-14	-	mV/°C
	I _{CES}	$V_{GE} = 0 V, V_{CE} = 600 V$		-	0.2	100	
Collector to emitter leakage current		$V_{GE} = 0 V, V_{CE} = 600 V,$	T _J = 125 °C	-	51	-	μA
		$V_{GE} = 0 V, V_{CE} = 600 V,$	T _J = 150 °C	-	508	-	
Gate to emitter leakage current	I _{GES}	$V_{GE} = \pm 20 \text{ V}$		-	-	± 250	nA

Revision: 20-Jul-2021 1 For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishav.com/doc?91000

RoHS COMPLIANT

www.vishay.com

Vishay Semiconductors

SWITCHING CHARACTERISTICS	S (T _J = 25	°C unless otherwise	specified)				
PARAMETER	SYMBOL	TEST CONDIT	IONS	MIN.	TYP.	MAX.	UNITS
Total gate charge (turn-on)	Qg			-	909	-	
Gate-to-emitter charge (turn-on)	Q _{ge}	I _C = 75 A, V _{CC} = 520 V,	V _{GE} = 15 V	-	139	-	nC
Gate-to-collector charge (turn-on)	Q _{gc}			-	249	-	
Turn-on switching loss	Eon			-	1.61	-	
Turn-off switching loss	E _{off}	T _J = 25 °C		-	6.65	-	mJ
Total switching loss	E _{tot}	I _C = 100 A		-	8.26	-	
Turn-on delay time	t _{d(on)}	V _{CC} = 480 V V _{GF} = 15 V		-	469	-	
Rise time	t _r	$V_{GE} = 15 V$ $R_g = 5.0 \Omega$		-	36	-	
Turn-off delay time	t _{d(off)}	$L = 500 \mu\text{H}$	Energy	-	539	-	ns
Fall time	t _f		losses	-	109	-	
Turn-on switching loss	E _{on}		include tail and diode recovery. Diode used UFL330FA60	-	2.03	-	mJ - ns
Turn-off switching loss	E _{off}	T _J = 125 °C		-	9.65	-	
Total switching loss	E _{tot}	$I_{C} = 100 \text{ A}$ $V_{CC} = 480 \text{ V}$ $V_{GE} = 15 \text{ V}$ $R_{g} = 5.0 \Omega$		-	11.68	-	
Turn-on delay time	t _{d(on)}			-	498	-	
Rise time	tr			-	43	-	
Turn-off delay time	t _{d(off)}	L = 500 μH		-	640	-	
Fall time	t _f			-	128	-	
Internal emitter inductance	L _E	Between lead and center of die contact		-	5.0	-	nH
Input capacitance	Cies	$V_{GE} = 0 V, V_{CC} = 25 V, f = 1.0 MHz$		-	24 200	-	
Output capacitance	C _{oes}			300	-	pF	
Reverse transfer capacitance	C _{res}			84	-		
Reverse bias safe operating area	RBSOA	$\begin{array}{l} T_J = 175 \ ^{\circ}C, \ I_C = 250 \ A, \ R_g = 5.0 \ \Omega, \\ V_{GE} = 15 \ V \ to \ 0 \ V, \ V_{CC} = 400 \ V, \\ V_p = 600 \ V \end{array} \hspace{1.5cm} Fullsquare$		9			

THERMAL AND MECHANICAL SPECIFICATIONS						
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS
Junction and storage temperature range	T _J , T _{Stg}		-40	-	175	°C
Thermal resistance junction to case	R _{thJC}		-	-	0.2	°C/W
Thermal resistance case to heatsink	R _{thCS}	Flat, greased surface	-	0.05	-	0/10
Weight			-	30	-	g
Mounting torque		Torque to terminal	-	-	1.1 (9.7)	Nm (lbf.in)
Mounting torque		Torque to heatsink	-	-	1.8 (15.9)	Nm (lbf.in)
Case style		SOT-227				

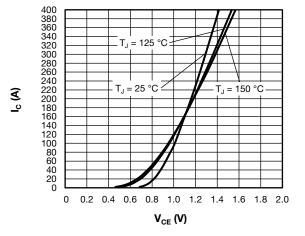


Fig. 1 - Typical Trench IGBT Output Characteristics, V_{GE} = 15 V

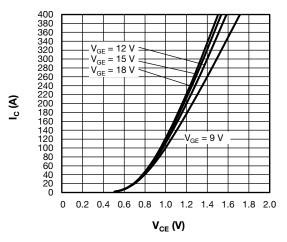


Fig. 2 - Typical Trench IGBT Output Characteristics, T_J = 125 °C

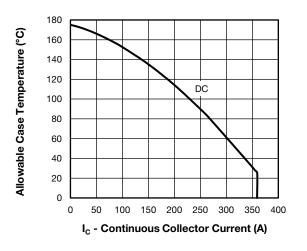


Fig. 3 - Typical Trench IGBT Continuous Collector Current vs. Case Temperature

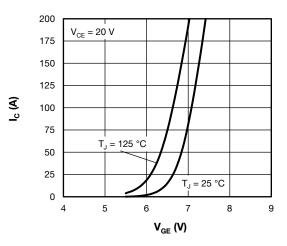


Fig. 4 - Typical Trench IGBT Transfer Characteristics

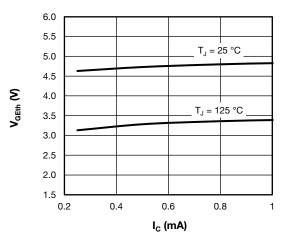


Fig. 5 - Typical Trench IGBT Gate Threshold Voltage

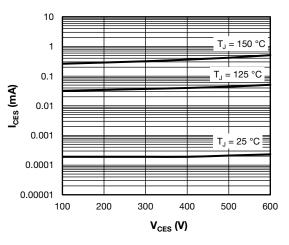
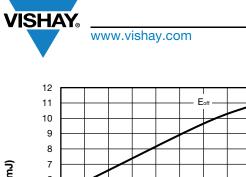


Fig. 6 - Typical Trench IGBT Zero Gate Voltage Collector Current


Revision: 20-Jul-2021

3

For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

Vishay Semiconductors

Vishay Semiconductors

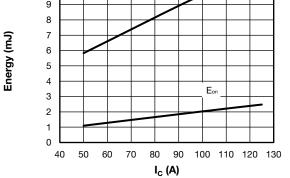


Fig. 7 - Typical Trench IGBT Energy Loss vs. I_C T_J = 125 °C, V_{CC} = 480 V, R_g = 5 $\Omega,$ V_{GE} = +15 V/-15 V, L = 500 μH

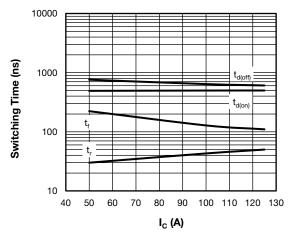
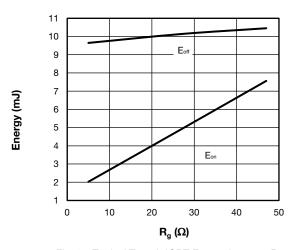
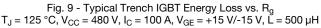




Fig. 8 - Typical Trench IGBT Switching Time vs. I_C $T_{J} = 125 \text{ °C}, V_{CC} = 480 \text{ V}, R_{q} = 5 \Omega, V_{GE} = +15 \text{ V}/-15 \text{ V}, L = 500 \mu\text{H}$

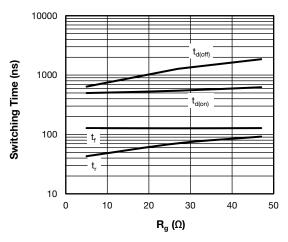


Fig. 10 - Typical Trench IGBT Switching Time vs. R_g T_J = 125 °C, V_{CC} = 480 V, I_C = 100 A, V_{GE} = +15 V/-15 V, L = 500 μH

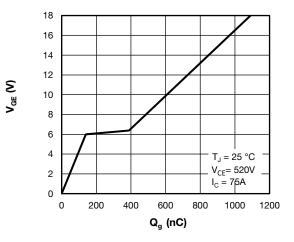
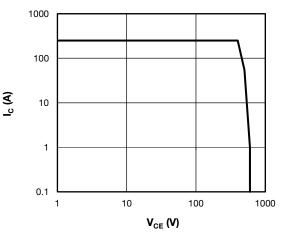
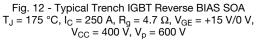
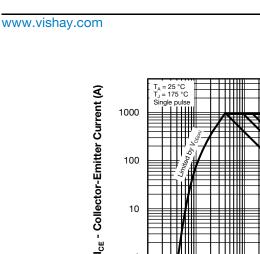
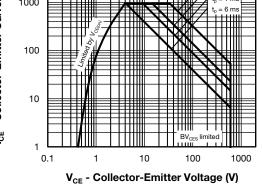




Fig. 11 - Typical Trench IGBT Gate Charge vs. Gate to Emitter Voltage



Revision: 20-Jul-2021


Document Number: 96731

4 For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishav.com/doc?91000

Vishay Semiconductors

ISHAY

= 100 µs

500 u

Fig. 13 - Typical Trench IGBT Safe Operating Area

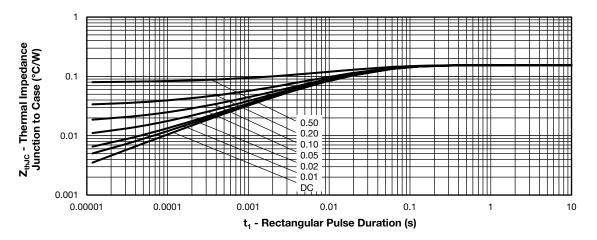
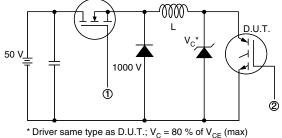
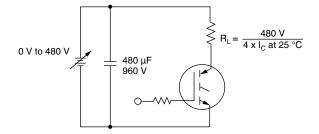
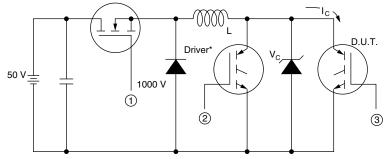



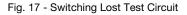
Fig. 14 - Maximum Thermal Impedance Z_{thJC} Characteristics



Vishay Semiconductors



Note: Due to the 50 V power supply, pulse width and inductor will increase to obtain rated I_d



* Driver same type as D.U.T., V_{C} = 480 V

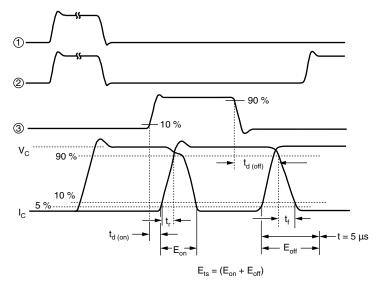
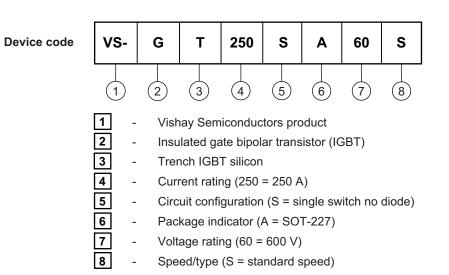
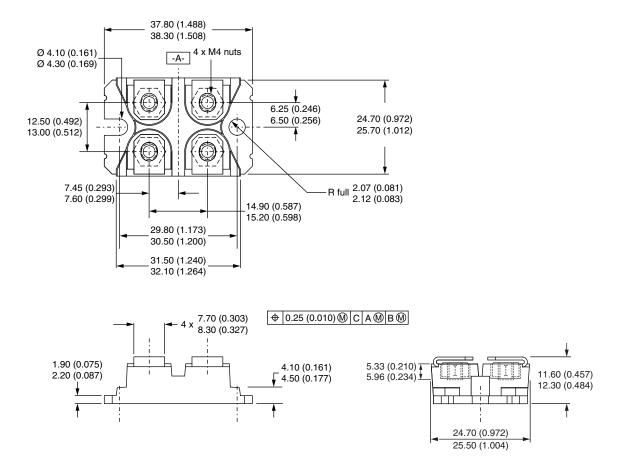



Fig. 18 - Switching Loss Waveforms

ORDERING INFORMATION TABLE

CIRCUIT CONFIGURATION					
CIRCUIT	CIRCUIT CONFIGURATION CODE	CIRCUIT DRAWING			
Single switch, no diode	S	Lead Assignment 4 4 1, 4 (E) N-channel Lead Assignment 4 1 1 1 1 1 1 1 1 1 1 1 1 1			


LINKS TO RELATED DOCUMENTS				
Dimensions www.vishay.com/doc?95423				
Packaging information	www.vishay.com/doc?95425			

Vishay Semiconductors

SOT-227 Generation 2

DIMENSIONS in millimeters (inches)

Note

• Controlling dimension: millimeter

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Vishay products are not designed for use in life-saving or life-sustaining applications or any application in which the failure of the Vishay product could result in personal injury or death unless specifically qualified in writing by Vishay. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

© 2025 VISHAY INTERTECHNOLOGY, INC. ALL RIGHTS RESERVED

Revision: 01-Jan-2025

1