IGBT Fourpack Module, 50 A

FEATURES
- Trench gate field stop IGBT
- Square RBSOA
- HEXFRED® low Qrr, low switching energy
- Positive VCE(on) temperature coefficient
- Copper baseplate
- Low stray inductance design
- Designed and qualified for industrial market
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

BENEFITS
- Benchmark efficiency for SMPS appreciation in particular HF welding
- Rugged transient performance
- Low EMI, requires less snubbing
- Direct mounting to heatsink space saving
- PCB solderable terminals
- Low junction to case thermal resistance

<table>
<thead>
<tr>
<th>PRIMARY CHARACTERISTICS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>VCES</td>
<td>1200 V</td>
</tr>
<tr>
<td>IC at TC = 66 °C</td>
<td>50 A</td>
</tr>
<tr>
<td>VCE(on) (typical)</td>
<td>2.34 V</td>
</tr>
<tr>
<td>Speed</td>
<td>8 kHz to 30 kHz</td>
</tr>
<tr>
<td>Package</td>
<td>ECONO 2</td>
</tr>
<tr>
<td>Circuit configuration</td>
<td>4 pack</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ABSOLUTE MAXIMUM RATINGS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
<td>SYMBOL</td>
</tr>
<tr>
<td>Collector to emitter voltage</td>
<td>VCES</td>
</tr>
<tr>
<td>Continuous collector current</td>
<td>IC</td>
</tr>
<tr>
<td>Pulsed collector current, see fig. C.T.5</td>
<td>ICM</td>
</tr>
<tr>
<td>Clamped inductive load current</td>
<td>IMM</td>
</tr>
<tr>
<td>Diode continuous forward current</td>
<td>IF</td>
</tr>
<tr>
<td>Diode maximum forward current</td>
<td>IMF</td>
</tr>
<tr>
<td>Gate to emitter voltage</td>
<td>VGE</td>
</tr>
<tr>
<td>Maximum power dissipation (IGBT)</td>
<td>PO</td>
</tr>
<tr>
<td>Isolation voltage</td>
<td>VSOL</td>
</tr>
</tbody>
</table>

Revision: 26-Jul-2021

For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?791000
ELECTRICAL SPECIFICATIONS ($T_J = 25 \, ^\circ\text{C}$ unless otherwise specified)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>TEST CONDITIONS</th>
<th>MIN.</th>
<th>TYP.</th>
<th>MAX.</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector to emitter breakdown voltage</td>
<td>$B_V(\text{CES})$</td>
<td>$V_{GE} = 0 , V, I_C = 2 , mA$</td>
<td>1200</td>
<td>-</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td>Collector to emitter voltage</td>
<td>$V_{GE(ON)}$</td>
<td>$I_C = 50 , A, V_{GE} = 15 , V$</td>
<td>-</td>
<td>2.34</td>
<td>2.80</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$I_C = 50 , A, V_{GE} = 15 , V, T_J = 125 , ^\circ\text{C}$</td>
<td>-</td>
<td>2.66</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Gate threshold voltage</td>
<td>$V_{GE(th)}$</td>
<td>$V_{GE} = V_{IC} = 2 , mA (25 , ^\circ\text{C} \text{ to } 125 , ^\circ\text{C})$</td>
<td>4.6</td>
<td>5.9</td>
<td>7.6</td>
<td></td>
</tr>
<tr>
<td>Threshold voltage temperature coefficient</td>
<td>$\Delta V_{GE(th)} / \Delta T_J$</td>
<td>$V_{GE}, I_C = 2 , mA (25 , ^\circ\text{C} \text{ to } 125 , ^\circ\text{C})$</td>
<td>-13</td>
<td>-</td>
<td>-</td>
<td>mV/°C</td>
</tr>
<tr>
<td>Zero gate voltage collector current</td>
<td>I_{CES}</td>
<td>$V_{GE} = 0 , V, V_{CE} = 1200 , V$</td>
<td>-</td>
<td>1</td>
<td>50</td>
<td>μA</td>
</tr>
<tr>
<td>Diode forward voltage drop</td>
<td>V_{FM}</td>
<td>$I_F = 50 , A$</td>
<td>-</td>
<td>3.30</td>
<td>4.5</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$I_F = 50 , A, T_J = 125 , ^\circ\text{C}$</td>
<td>-</td>
<td>3.60</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Gate to emitter leakage current</td>
<td>I_{GES}</td>
<td>$V_{GE} = \pm 20 , V$</td>
<td>-</td>
<td>-</td>
<td>± 200</td>
<td>nA</td>
</tr>
</tbody>
</table>

SWITCHING CHARACTERISTICS ($T_J = 25 \, ^\circ\text{C}$ unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>TEST CONDITIONS</th>
<th>MIN.</th>
<th>TYP.</th>
<th>MAX.</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total gate charge (turn-on)</td>
<td>Q_G</td>
<td>$I_C = 50 , A$</td>
<td>-</td>
<td>154</td>
<td>-</td>
<td>nC</td>
</tr>
<tr>
<td>Gate to emitter charge (turn-on)</td>
<td>Q_{GE}</td>
<td>$V_{CC} = 960 , V$</td>
<td>-</td>
<td>17</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Gate to collector charge (turn-on)</td>
<td>Q_{GC}</td>
<td>$V_{GE} = 15 , V$</td>
<td>-</td>
<td>79</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Turn-on switching loss</td>
<td>E_{on}</td>
<td>$I_C = 50 , A, V_{CC} = 600 , V$</td>
<td>-</td>
<td>1.17</td>
<td>-</td>
<td>mJ</td>
</tr>
<tr>
<td>Turn-off switching loss</td>
<td>E_{off}</td>
<td>$V_{GE} = 15 , V, R_0 \geq 4.7 , \Omega, L = 500 , \mu\text{H}$</td>
<td>-</td>
<td>1.50</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Total switching loss</td>
<td>E_{tot}</td>
<td>$T_J \geq 25 , ^\circ\text{C}$</td>
<td>-</td>
<td>2.67</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Turn-on delay time</td>
<td>$t_{d(on)}$</td>
<td>$I_C = 50 , A, V_{CC} = 600 , V$</td>
<td>-</td>
<td>1.58</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Turn-off delay time</td>
<td>$t_{d(off)}$</td>
<td>$V_{GE} = 15 , V, R_0 \geq 4.7 , \Omega, L = 500 , \mu\text{H}$</td>
<td>-</td>
<td>2.52</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Rise time</td>
<td>t_r</td>
<td>$I_C = 50 , A, V_{CC} = 600 , V$</td>
<td>-</td>
<td>11</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>Turn-off delay time</td>
<td>t_{f}</td>
<td>$T_J \geq 125 , ^\circ\text{C}$</td>
<td>-</td>
<td>96</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Reverse bias safe operating area</td>
<td>RBSOA</td>
<td>$T_J \geq 150 , ^\circ\text{C}, I_C \geq 150 , A, V_{CC} \geq 800 , V, V_P \geq 1200 , V, R_0 \geq 4.7 , \Omega, V_{GE} \geq 16 , V \text{ to } 0 , V$</td>
<td>Fullsquare</td>
<td>5</td>
<td>-</td>
<td>μs</td>
</tr>
<tr>
<td>Short circuit safe operating area</td>
<td>SCSOA</td>
<td>$T_J \geq 150 , ^\circ\text{C}, V_{CC} \geq 600 , V, V_P \geq 1200 , V, R_0 \geq 10 , \Omega, V_{GE} \geq 15 , V \text{ to } 0 , V$</td>
<td>5</td>
<td>-</td>
<td>-</td>
<td>μs</td>
</tr>
<tr>
<td>Diode peak reverse recovery current</td>
<td>I_{rr}</td>
<td>$T_J \geq 25 , ^\circ\text{C}$</td>
<td>-</td>
<td>1.3</td>
<td>-</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$T_J \geq 125 , ^\circ\text{C}$</td>
<td>-</td>
<td>2.0</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Diode reverse recovery time</td>
<td>t_{rr}</td>
<td>$T_J \geq 25 , ^\circ\text{C}$</td>
<td>-</td>
<td>0.453</td>
<td>-</td>
<td>μs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$T_J \geq 125 , ^\circ\text{C}$</td>
<td>-</td>
<td>0.74</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Total reverse recovery charge</td>
<td>Q_{rr}</td>
<td>$T_J \geq 25 , ^\circ\text{C}$</td>
<td>-</td>
<td>0.12</td>
<td>-</td>
<td>μC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$T_J \geq 125 , ^\circ\text{C}$</td>
<td>-</td>
<td>0.4</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Note

(1) Energy losses include "tail" and diode reverse recovery

INTERNAL NTC - THERMISTOR SPECIFICATIONS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>TEST CONDITIONS</th>
<th>TYP.</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistance</td>
<td>R_{25}</td>
<td>$T_C = 25 , ^\circ\text{C}$</td>
<td>5000</td>
<td>Ω</td>
</tr>
<tr>
<td></td>
<td>R_{100}</td>
<td>$T_C = 100 , ^\circ\text{C}$</td>
<td>493 ± 5</td>
<td>%</td>
</tr>
<tr>
<td>B-value</td>
<td>$B_{25/50}$</td>
<td>$R_0 = R_{25} \exp \left[(B_{25/50} / 298.15) \left(1 / T_2 - 1 / T_1 \right) \right]$</td>
<td>3375 ± 5</td>
<td>%</td>
</tr>
<tr>
<td>Maximum operating temperature</td>
<td>220</td>
<td>°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dissipation constant</td>
<td>2</td>
<td>mW/°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal time constant</td>
<td>8</td>
<td>s</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Revision: 26-Jul-2021

For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
THERMAL AND MECHANICAL SPECIFICATIONS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>TEST CONDITIONS</th>
<th>MIN.</th>
<th>TYP.</th>
<th>MAX.</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Junction and storage temperature range</td>
<td>T<sub>j</sub>, T<sub>Stg</sub></td>
<td>-40, -</td>
<td>150</td>
<td>°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Junction to case IGBT</td>
<td>R<sub>TJC</sub></td>
<td>- , -</td>
<td>0.54</td>
<td>°C/W</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Junction to case DIODE</td>
<td>R<sub>TJC</sub></td>
<td>- , -</td>
<td>1</td>
<td>°C/W</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Case to sink per module</td>
<td>R<sub>TJC3b</sub></td>
<td>-</td>
<td>0.05</td>
<td>°C/W</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mounting torque (M5)</td>
<td></td>
<td>2.7 , 3.3</td>
<td>3.3</td>
<td>Nm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td></td>
<td>-</td>
<td>170</td>
<td>g</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Trench IGBT Output Characteristics, V_{GE} = 15 V](image1)

![Maximum Trench IGBT Continuous Collector Current vs. Case Temperature](image2)

![Trench IGBT Output Characteristics, T_j = 125 °C](image3)

![Trench IGBT Transfer Characteristics](image4)
Fig. 5 - Typical Trench IGBT Gate Threshold Voltage

Fig. 6 - Typical Trench IGBT Zero Gate Voltage Collector Current

Fig. 7 - Typical Trench IGBT Energy Loss vs. IC (with Antiparallel Diode)

Fig. 8 - Typical Trench IGBT Switching Time vs. IC (with Antiparallel Diode)

Fig. 9 - Typical Trench IGBT Energy Loss vs. Rg (with Antiparallel Diode)

Fig. 10 - Typical Trench IGBT Switching Time vs. Rg (with Antiparallel Diode)
Fig. 11 - Typical Trench IGBT Gate Charge vs. Gate to Emitter Voltage

Fig. 12 - Typical Diode Forward Characteristics

Fig. 13 - Typical Diode Reverse Recovery Time vs. dI/dt

Fig. 14 - Typical Diode Reverse Recovery Current vs. dI/dt

Fig. 15 - Typical Diode Reverse Recovery Charge vs. dI/dt

Fig. 16 - Trench IGBT Reverse BIAS SOA
\[T_J = 150 \, ^\circ\text{C}, I_C = 150 \, \text{A}, R_\text{th} = 4.7 \, \Omega, V_{GE} = +15 \, \text{V} / 0 \, \text{V}, V_{CC} = 800 \, \text{V}, V_P = 1200 \, \text{V} \]
Fig. 17 - Trench IGBT Safe Operating Area

Fig. 18 - Maximum Trench IGBT Thermal Impedance Z_{thJC} Characteristics

Fig. 19 - Maximum Diode Thermal Impedance Z_{thJC} Characteristics
Fig. 20 - Gate Charge Circuit (Turn-Off)

Fig. 21 - RBSOA Circuit

Fig. 22 - S.C. SOA Circuit

Fig. 23 - Switching Loss Circuit

Fig. 24 - Resistive Load Circuit
ORDERING INFORMATION TABLE

<table>
<thead>
<tr>
<th>Device code</th>
<th>VS-</th>
<th>G</th>
<th>T</th>
<th>50</th>
<th>Y</th>
<th>F</th>
<th>120</th>
<th>N</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 - Vishay Semiconductors product
2 - Insulated gate bipolar transistor (IGBT)
3 - T = Trench gate field stop IGBT
4 - Current rating (50 = 50 A)
5 - Circuit configuration (Y = 4 pack)
6 - Package indicator (F = ECONO 2)
7 - Voltage rating (120 = 1200 V)
8 - Speed/type (N = ultrafast with reduced diode, speed 8 kHz to 60 kHz)
9 - NTC Thermistor

CIRCUIT CONFIGURATION

![Circuit Diagram 1](QB1 QB2 QB3 QB4)

![Circuit Diagram 2](QB1 QB2 QB3 QB4)
Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay’s knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer’s responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer’s technical experts. Product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

© 2024 VISHAY INTERTECHNOLOGY, INC. ALL RIGHTS RESERVED