VS-50MT060TFT

www.vishay.com

Vishay Semiconductors

Full Bridge TrenchStop IGBT, MTP Power Modules

(Package example)

600 V

50 A

1.81 V

30 kHz to 100 kHz

MTP

Full bridge

PRIMARY CHARACTERISTICS

VCES

 I_C at $T_C = 45 \ ^\circ C$

V_{CE(on)} at 50 A

Speed

Package

Circuit configuration

FEATURES

- TrenchStop IGBT technology
- Positive V_{CE(on)} temperature coefficient
- FRED Pt[®] Gen5 antiparallel diodes with ultrasoft reverse recovery
- Low diode V_F
- Square RBSOA
- · Very low stray inductance design for high speed operation
- UL approved file E78996
- · Designed and qualified for industrial level
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

BENEFITS

- · Optimized for welding, UPS and SMPS applications
- · Rugged with ultrafast performance
- Outstanding ZVS and hard switching operation
- Low EMI, requires less snubbing
- Excellent current sharing in parallel operation
- Direct mounting to heatsink
- PCB solderable terminals
- Very low junction to case thermal resistance

PARAMETER	SYMBOL	TEST CONDITIONS	MAX.	UNITS
Collector to emitter breakdown voltage	V _{CES}		600	V
Continuous collector current	1	T _C = 25 °C	55	
Continuous collector current	I _C	T _C = 80 °C	41	
Pulsed collector current	I _{CM}	V _{GE} = 15 V	115	
Clamped inductive load current	I _{LM}		95	A
Diode continuous forward current	I _F	T _C = 25 °C	54	
		T _C = 80 °C	41	
Diode maximum forward current	I _{FM}		250	
Gate to emitter voltage	V _{GE}		± 20	N/
RMS isolation voltage	VISOL	Any terminal to case, t = 1 min	2500	V
Maximum neuror dissinction (anh/ICDT)	Р	T _C = 25 °C	144	
Maximum power dissipation (only IGBT)	PD	T _C = 80 °C	91	w
	_	T _C = 25 °C	107	v
Maximum power dissipation (only diode)	PD	T _C = 80 °C	68	

ROHS COMPLIANT

1

www.vishay.com

Vishay Semiconductors

ELECTRICAL SPECIFICATIONS ($T_J = 25 \text{ °C}$ unless otherwise noted)								
PARAMETER	SYMBOL	TEST CONDITIONS		TYP.	MAX.	UNITS		
Collector to emitter breakdown voltage	V _{(BR)CES}	$V_{GE} = 0 \text{ V}, \text{ I}_{C} = 0.5 \text{ mA}$	600	-	-	V		
		$V_{GE} = 15 \text{ V}, \text{ I}_{C} = 50 \text{ A}$	-	1.81	2.1			
Collector to emitter saturation voltage	V _{CE(on)}	V_{GE} = 15 V, I _C = 50 A, T _J = 125 °C	-	2.1	-	V _{CE(on)}		
		$V_{GE} = 15 \text{ V}, \text{ I}_{C} = 50 \text{ A}, \text{ T}_{J} = 175 ^{\circ}\text{C}$	-	2.23	-			
Gate threshold voltage	V _{GE(th)}	$V_{CE} = V_{GE}, I_C = 0.5 \text{ mA}$		4.0	5.3			
Temperature coefficient of threshold voltage	$V_{GE(th)}/\Delta T_J$	$V_{CE} = V_{GE}$, $I_C = 0.5$ mA (25 °C to 125 °C)	-	-9.9	-	mV/°C		
Transconductance	g _{fe}	$V_{CE} = 20 \text{ V}, \text{ I}_{C} = 50 \text{ A}$	-	37	-	S		
Transfer characteristics	V _{GE}	$V_{CE} = 20 \text{ V}, \text{ I}_{C} = 50 \text{ A}$	-	6.4	-	V		
		$V_{GE} = 0 \text{ V}, V_{CE} = 600 \text{ V}, T_{J} = 25 ^{\circ}\text{C}$	-	0.3	40	μA		
Zero gate voltage collector current	I _{CES} ⁽¹⁾	$V_{GE} = 0 \text{ V}, V_{CE} = 600 \text{ V}, T_{J} = 125 ^{\circ}\text{C}$	-	40	-			
		$V_{GE} = 0 \text{ V}, V_{CE} = 600 \text{ V}, T_{J} = 175 ^{\circ}\text{C}$	-	1.2	-	mA		
Gate to emitter leakage current	I _{GES}	$V_{GE} = \pm 20 \text{ V}$	-	-	± 200	nA		

Note

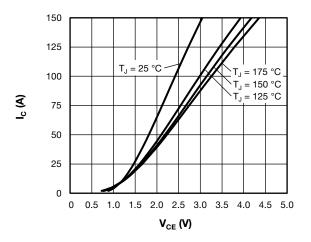
 $^{(1)}~~I_{CES}$ includes also opposite leg overall leakage

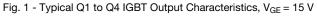
SWITCHING CHARACTERISTICS (T _J = 25 °C unless otherwise specified)								
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS		
Total gate charge (turn-on)	Qg	I _C = 50 A	-	123	-			
Gate to emitter charge (turn-on)	Q _{ge}	V _{CC} = 520 V	-	20	-	nC		
Gate to collector charge (turn-on)	Q _{gc}	V _{GE} = 15 V	-	24	-			
Turn-on switching loss	E _{on}		-	0.37	-			
Turn-off switching loss	E _{off}	V_{CC} = 300 V, I _C = 50 A, V _{GE} = 15 V, R _a = 4.7 Ω, L = 500 µH, T _J = 25 °C	-	0.23	-]		
Total switching loss	E _{tot}	1 ig = 11 iii, ii = 000 pi ii, ii j = 20 0	-	0.70	-			
Turn-on switching loss	E _{on}		-	0.53	-	mJ		
Turn-off switching loss	E _{off}	V _{CC} = 300 V, I _C = 50 A, V _{GE} = 15 V, R _a = 4.7 Ω, L = 500 μH, T _J = 125 °C	-	0.31	-			
Total switching loss	E _{tot}	$r_{10} = 4.7 32, E = 600 \mu r_1, r_1 = 120 0$	-	0.84	-			
Input capacitance	C _{ies}	V _{CF} = 25 V	-	3000	-			
Output capacitance	C _{oes}	$V_{GE} = 0 V$, f = 1 MHz	-	50	-	pF		
Reverse transfer capacitance	C _{res}	T _J = 25 °C	-	11	-			
Reverse bias safe operating area	RBSOA	$ T_J = 175 \ ^\circ C, \ I_C = 95 \ A, \ R_g = 4.7 \ \Omega, \ V_{GE} \\ = 15 \ V \ to \ 0 \ V, \ V_{CC} = 300 \ V, \ V_p = 600 \ V $	Fullsquare		e			

DIODE SPECIFICATIONS (T _J = 25 °C unless otherwise specified)								
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS		
Diode forward voltage drop		I _C = 50 A	- 1.66 2.2		2.23	3		
	V _{FM}	I _C = 50 A, T _J = 125 °C	-	1.43	-	V		
		I _C = 50 A, T _J = 175 °C	-	1.32	-			
Diode reverse recovery time	t_{rr} V _B = 400 V,		-	61	-	ns		
Diode peak reverse current	Irr	$I_{\rm F} = 30 {\rm A},$	-	16	-	A		
Diode recovery charge	Q _{rr}	dl/dt = 1000 A/µs	-	400	-	nC		
Diode reverse recovery time	t _{rr}	$V_{B} = 400 V,$	-	68	-	ns		
Diode peak reverse current	Irr	$I_{\rm F} = 30 {\rm A},$	-	33	-	A		
Diode recovery charge	Q _{rr}	dl/dt = 1000 A/µs, T _J = 125 °C	-	1300	-	nC		

Revision: 26-Oct-2022

Document Number: 96858




www.vishay.com

Vishay Semiconductors

INTERNAL NTC - THERMISTOR SPECIFICATIONS								
PARAMETER	SYMBOL	TEST CONDITIONS	VALUE	UNITS				
Resistance	R ₂₅	T _J = 25 °C	5000	Ω				
	R ₁₀₀	T _J = 100 °C	493 ± 5 %	52				
B-value	B _{25/50}	R ₂ = R ₂₅ exp. [B _{25/50} (1/T2 - 1/298.15K))]	3375 ± 5 %	К				
Maximum operating temperature			220	°C				
Dissipation constant			2	mW/°C				
Thermal time constant			8	s				

THERMAL AND MECHANICAL SPECIFICATIONS								
PARAMETER		SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS	
Operating junction temperature range		TJ		-40	-	175	°€	
Storage temperature range		T _{Stg}		-40	-	150	U	
IGBT		Б		-	-	1.04		
Junction to case	Diode	R _{thJC}		-	-	1.40	°C/W	
Case to sink per module		R _{thCS}	Heatsink compound thermal conductivity = 1 W/mK	-	0.06	-		
Clearance			External shortest distance in air between two terminals	5.5	-	-		
Creepage			Shortest distance along external surface of the insulating material between two terminals	8	-	-	mm	
Mounting torque			A mounting compound is recommended and the torque should be checked after 3 hours to allow for the spread of the compound. Lubricated threads.	3 ± 10 %			Nm	
Weight					66		g	

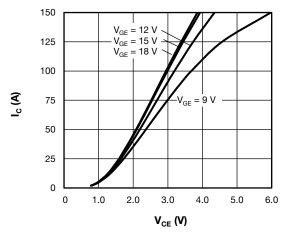


Fig. 2 - Typical Q1 to Q4 IGBT Output Characteristics, T_J = 125 °C

Vishay Semiconductors

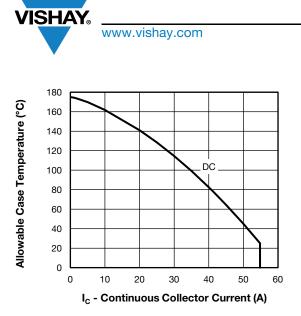


Fig. 3 - Maximum Q1 to Q4 IGBT Continuous Collector Current vs. Case Temperature

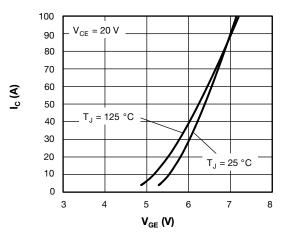


Fig. 4 - Typical Q1 to Q4 IGBT Transfer Characteristics

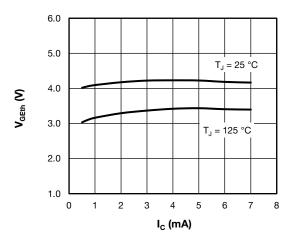


Fig. 5 - Typical Q1 to Q4 IGBT Gate Threshold Voltage

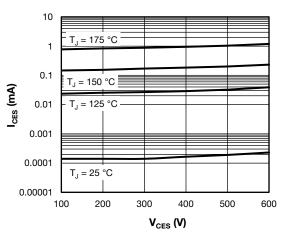


Fig. 6 - Typical Q1 to Q4 IGBT Zero Gate Voltage Collector Current

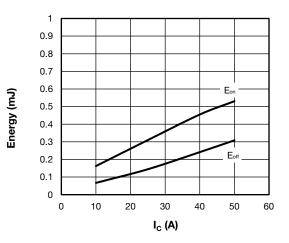


Fig. 7 - Typical Q1 to Q4 IGBT Energy Loss vs. I_C (with Antiparallel Diode) T_J = 125 °C, V_{CC} = 300 V, R_g = 4.7 Ω , V_{GE} = +15 V/-15 V, L = 500 μ H

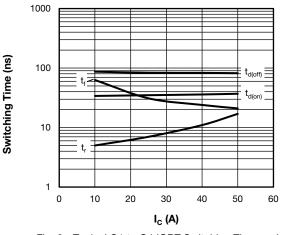


Fig. 8 - Typical Q1 to Q4 IGBT Switching Time vs. I_C (with Antiparallel Diode) $T_J = 125 \text{ °C}, V_{CC} = 300 \text{ V}, R_a = 4.7 \Omega, V_{GE} = +15 \text{ V}/-15 \text{ V}, L = 500 \mu\text{H}$

Revision: 26-Oct-2022

4

Document Number: 96858

For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

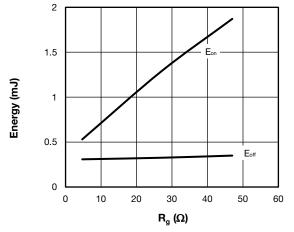


Fig. 9 - Typical Q1 to Q4 IGBT Energy Loss vs. R_g (with Antiparallel Diode) T_J = 125 °C, V_{CC} = 300 V, I_C = 50 A, V_{GE} = +15 V/-15 V, L = 500 μH

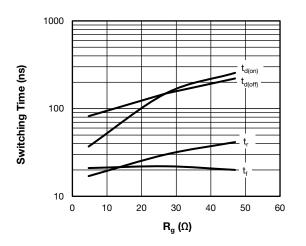


Fig. 10 - Typical Q1 to Q4 IGBT Switching Time vs. R_g (with Antiparallel Diode) T_J = 125 °C, V_{CC} = 300 V, I_C = 50 A, V_{GE} = +15 V/-15 V, L = 500 μH

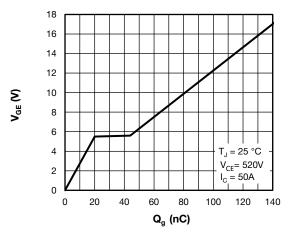


Fig. 11 - Typical Q1 to Q4 IGBT Gate Charge vs. Gate to Emitter Voltage

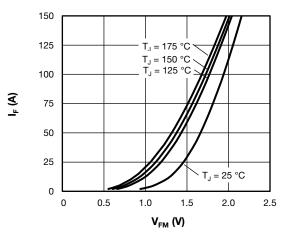


Fig. 12 - Typical D1 to D4 Antiparallel Diode Forward Characteristics

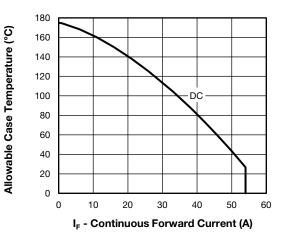


Fig. 13 - Maximum D1 to D4 Antiparallel Diode Continuous Collector Current vs. Case Temperature

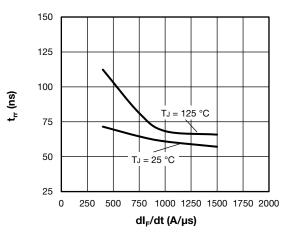
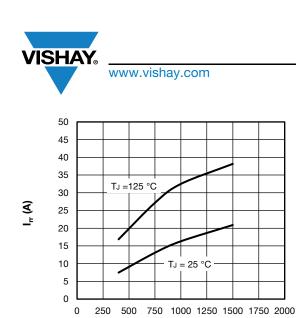


Fig. 14 - Typical D1 to D4 Antiparallel Diode Reverse Recovery Time vs. dI_F/dt $V_{rr} = 400 V$, $I_F = 30 A$

Revision: 26-Oct-2022

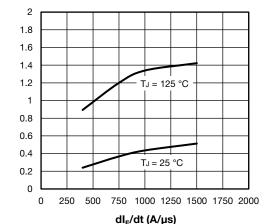
5

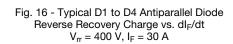
Document Number: 96858


For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

VS-50MT060TFT

Vishay Semiconductors




Vishay Semiconductors

dl_⊧/dt (A/µs)

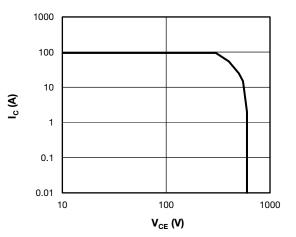


Fig. 17 - Q1 to Q4 IGBT Reverse BIAS SOA T_J = 175 °C, I_C = 95 A, R_g = 4.7 $\Omega,$ V_GE = +15 V/0 V, V_{CC} = 300 V, V_p = 600 V

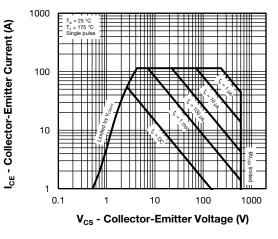


Fig. 18 - Q1 to Q4 IGBT Safe Operating Area

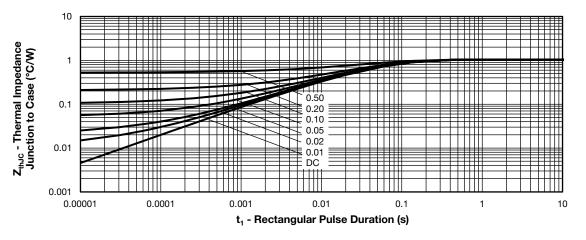


Fig. 19 - Maximum Thermal Impedance ZthJC Characteristics - (Q1 to Q4 PT IGBT)

 Revision: 26-Oct-2022
 6
 Document Number: 96858

 For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com
 THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

Q_{rr} (µC)

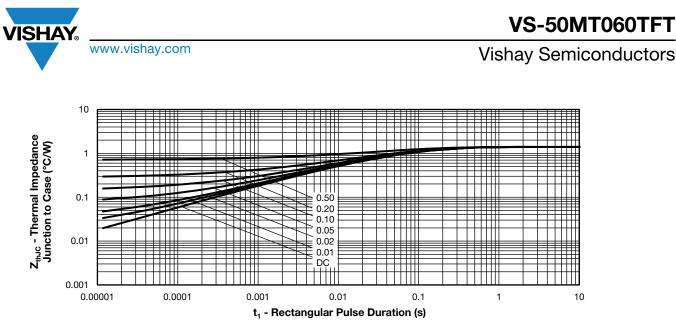


Fig. 20 - Maximum Thermal Impedance Z_{thJC} Characteristics - (D1 to D4 Antiparallel Diode)

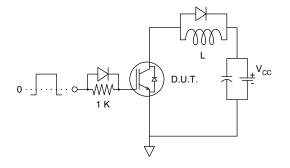


Fig. 21 - Gate Charge Circuit (Turn-Off)

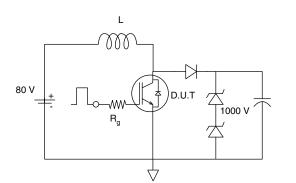


Fig. 22 - RBSOA Circuit

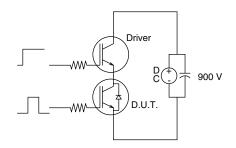


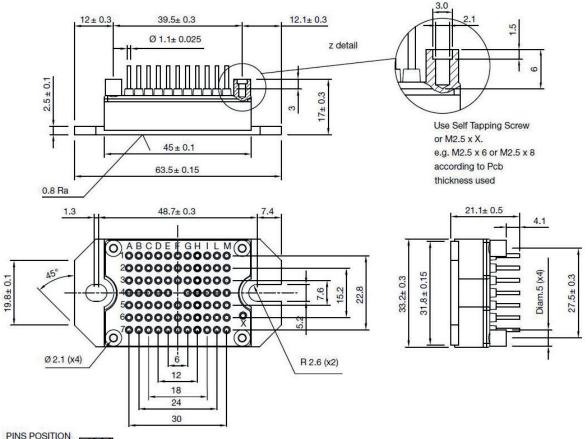
Fig. 23 - S.C. SOA Circuit



Fig. 24 - Switching Loss Circuit

ORDERING INFORMATION TABLE

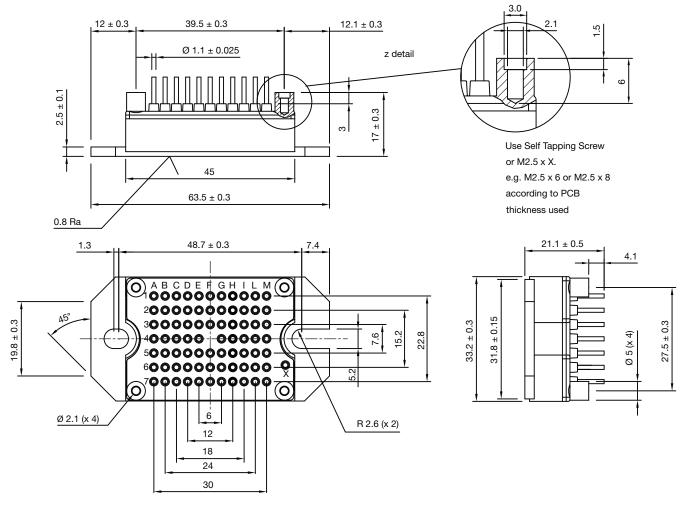
Device code	vs-	50	МТ	060	т	F	т	
		2	3	4	5	6	7	
	1 - Vishay Semiconductors product							
	2 - Current rating (50 = 50 A)							
	3.	- Ess	ential pa	art numl	oer			
	4 - Voltage code (060 = 600 V)							
	5 - Speed / type (T = trench IGBT)							
	6 - Circuit configuration (F = full bridge)							
	7 -	- T = thermistor						


CIRCUIT CONFIC	CIRCUIT CONFIGURATION							
CIRCUIT	CIRCUIT CONFIGURATION CODE	CIRCUIT DRAWING						
Full bridge IGBT	F	$F_{1} \bigcirc F_{1} \bigcirc F_{1} \bigcirc F_{1} \bigcirc F_{1} \bigcirc F_{1} \bigcirc F_{2} \bigcirc F_{2} \bigcirc F_{3} \bigcirc F_{4} \bigcirc F_{5} \bigcirc F_{7} \bigcirc F_{7$						

VS-50MT060TFT

Vishay Semiconductors

DIMENSIONS in millimeters


PINS POSITION WITH TOLERANC

Vishay Semiconductors

MTP - Full Pin

DIMENSIONS in millimeters

PINS POSITION WITH TOLERANCE ᡇ 0.6

Tolerance (unless other stated): $X = \pm 0.3$ $X.X = \pm 0.1$ $X.XX = \pm 0.03$

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Vishay products are not designed for use in life-saving or life-sustaining applications or any application in which the failure of the Vishay product could result in personal injury or death unless specifically qualified in writing by Vishay. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

© 2025 VISHAY INTERTECHNOLOGY, INC. ALL RIGHTS RESERVED

Revision: 01-Jan-2025

1