
www.vishay.com

Vishay Semiconductors

ROHS

HALOGEN FREE

Hyperfast Rectifier, 2 x 30 A FRED Pt® G5

LINKS TO ADDITIONAL RESOURCES

PRIMARY CHARACTERISTICS						
I _{F(AV)} per leg	30 A					
V _R	600 V					
V _F at I _F at 125 °C	1.6 V					
t _{rr} (typ.)	20					
I _{FSM}	280					
T _J max.	175 °C					
Package	TO-247AD 3L					
Circuit configuration	Common cathode					

FEATURES

- Hyperfast and optimized Q_{rr}
- Best in class forward voltage drop and switching losses trade off

- 175 °C maximum operating junction temperature
- Polyimide passivation
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

DESCRIPTION / APPLICATIONS

Featuring a unique combination of low conduction and switching losses, this rectifier is the right choice for high frequency converters, both soft switched / resonant. Specifically designed to improve efficiency of PFC and output rectification stages of EV / HEV battery charging stations, booster stage of solar inverters and UPS applications, these devices are perfectly matched to operate with MOSFETs or high speed IGBTs.

MECHANICAL DATA

Case: TO-247AD 3L

Molding compound meets UL 94 V-0 flammability rating **Terminal:** matte tin plated leads, solderable per J-STD-002

ABSOLUTE MAXIMUM RATINGS							
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS			
Repetitive peak reverse voltage	V_{RRM}		600	V			
Average rectified forward current per leg	I _{F(AV)}	T _C = 107 °C, D = 0.50	30				
Non-repetitive peak surge current per leg	I _{FSM}	$T_C = 25$ °C, $t_p = 10$ ms, sine wave	280	Α			
Repetitive peak forward current per leg	I _{FRM}	T _C = 107 °C, D = 0.50, f = 20 kHz	60				
Operating junction and storage temperature	T _J , T _{Stg}		-55 to +175	°C			

ELECTRICAL SPECIFICATIONS (T _J = 25 °C unless otherwise specified)								
PARAMETER SYMBOL TEST CONDITIONS MIN. TYP. MAX					MAX.	UNITS		
Breakdown voltage, blocking voltage per leg	V_{BR}, V_{R}	$I_R = 100 \mu A$	600	-	-			
Forward voltage per leg	V _F	I _F = 30 A	-	2.1	2.5	V		
		I _F = 30 A, T _J = 125 °C	-	1.6	-			
	I _R	$V_R = V_R$ rated	-	-	20			
Reverse leakage current per leg		$T_J = 125 ^{\circ}\text{C}, V_R = V_R \text{ rated}$	-	-	500	μA		
Junction capacitance per leg	C _T	V _R = 200 V	-	36	-	pF		
Series inductance per leg	L _S	Measured to lead 5 mm from package body	-	8	-	nΗ		

DYNAMIC RECOVERY CHARACTERISTICS (T _J = 25 °C unless otherwise specified)							
PARAMETER	SYMBOL	TEST CO	ONDITIONS	MIN.	TYP.	MAX.	UNITS
		$I_F = 1.0 \text{ A}, dI_F/dt = 10$	00 A/μs, V _R = 30 V	-	20	-	
Reverse recovery time per leg	t _{rr}	T _J = 25 °C		-	35	=.	ns
		T _J = 125 °C		-	46	-	
Pools recovery ourrest per lea		T _J = 25 °C	$I_F = 20 \text{ A}$	-	10	-	А
Peak recovery current per leg	I _{RRM}	T _J = 125 °C	dI _F /dt = 1000 A/μs V _R = 400 V	-	18	-	
Doverno recovent charge per leg	0	T _J = 25 °C		-	115	=.	nC
Reverse recovery charge per leg	Q _{rr}	T _J = 125 °C		=	560	-	110
Reverse recovery time per leg		T _J = 25 °C		-	39	=.	
neverse recovery time per leg	t _{rr}	T _J = 125 °C		-	49	=.	ns
Dools recovery average to a lea		T _J = 25 °C	$I_F = 30 \text{ A}$ $dI_F/dt = 1000 \text{ A/}\mu\text{s}$ $V_R = 400 \text{ V}$	=	10.5	-	Α
Peak recovery current per leg	I _{RRM}	T _J = 125 °C		-	20.5	-	A
Reverse recovery charge per leg	0	T _J = 25 °C		-	185	-	nC
	Q _{rr}	T _J = 125 °C	1		650	-	IIC

THERMAL - MECHANICAL SPECIFICATIONS							
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS	
Thermal resistance, junction-to-case per leg	R _{thJC}		-	-	1.1	°C/W	
Weight			-	5.5	-	g	
Mounting torque			6 (5)	-	12 (10)	kgf · cm (lbf · in)	
Maximum junction and storage temperature range	T _J , T _{Stg}		-55	-	175	°C	
Marking device		Case style: TO-247AD 3L		C5PW	6006L		

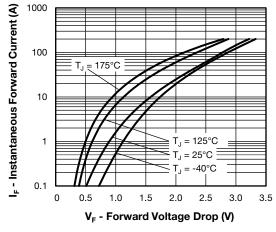


Fig. 1 - Typical Forward Voltage Drop Characteristics Per Leg

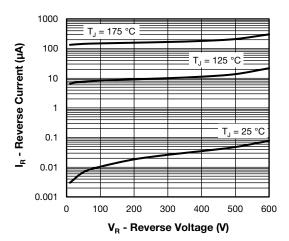


Fig. 2 - Typical Values of Reverse Current vs. Reverse Voltage Per Leg

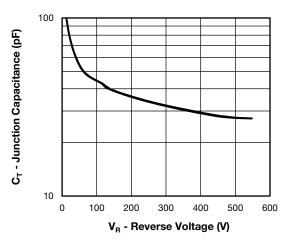


Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage Per Leg

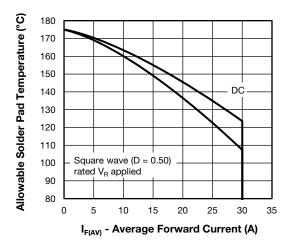


Fig. 4 - Maximum Allowable Case Temperature vs. Average Forward Current Per Leg

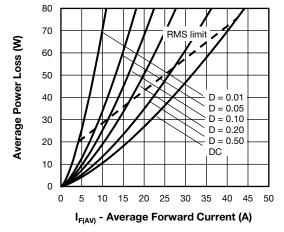


Fig. 5 - Average Power Loss vs. Average Forward Current Per Leg

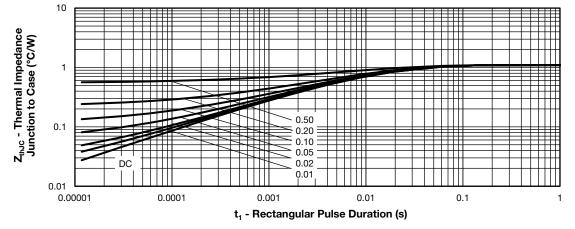


Fig. 6 - Thermal Impedance Z_{thJC} - Characteristics Per Leg

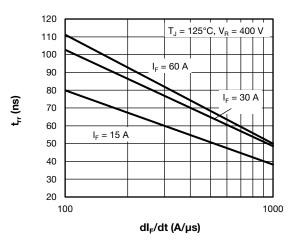


Fig. 7 - Typical Reverse Recovery Time vs. dl_F/dt Per Leg

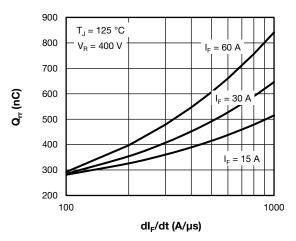


Fig. 8 - Typical Reverse Recovery Charge vs. dl_F/dt Per Leg

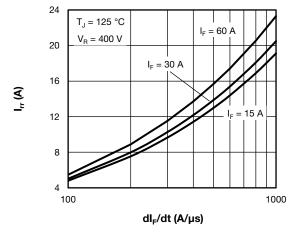


Fig. 9 - Typical Reverse Recovery Current vs. dI_F/dt Per Leg

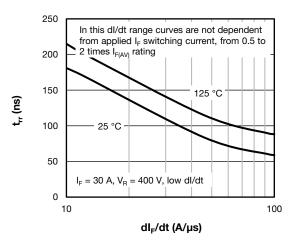


Fig. 10 - Typical Reverse Recovery Time vs. dl_F/dt Per Leg

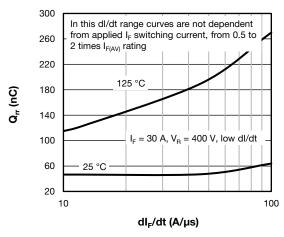


Fig. 11 - Typical Reverse Recovery Charge vs. dl_F/dt Per Leg

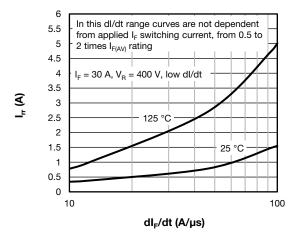


Fig. 12 - Typical Reverse Recovery Current vs. dI_F/dt Per Leg

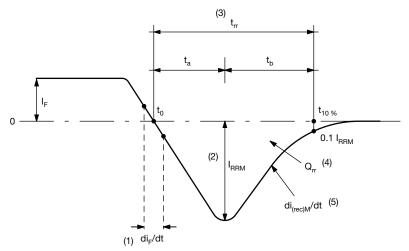


Fig. 13 - Reverse Recovery Waveform and Definitions

- (1) di_F/dt rate of change of current through zero crossing
- (2) I_{RRM} peak reverse recovery current (3) t_{rr} reverse recovery time measured from t₀, crossing point of negative going I_F, to point t_{10%}, 0.1 I_{RRM} (4) Q_{rr} area under curve defined by t₀ and t_{10 %}

$$Q_{rr} = \int_{t_0}^{t_{10}\%} I(t)dt$$

(5) di_(rec)M/dt - peak rate of change of current during t_b portion of t_{rr}

ORDERING INFORMATION TABLE

PREFERRED P/N

VS-C5PW6006L-N3

Device code VS-C 5 P W 60 06 L -N3 7 (3) (4) (5) (2) (6) (8) 9 Vishay Semiconductors product Circuit configuration C = common cathode FRED Pt® Gen 5 P = TO-247 package Process type: W = warp hyperfast recovery Current rating (60 = 60 A)Voltage rating (06 = 600 V)

ORDERING INFORMATION (Example)	

Environmental digit:

QUANTITY PER TUBE

25

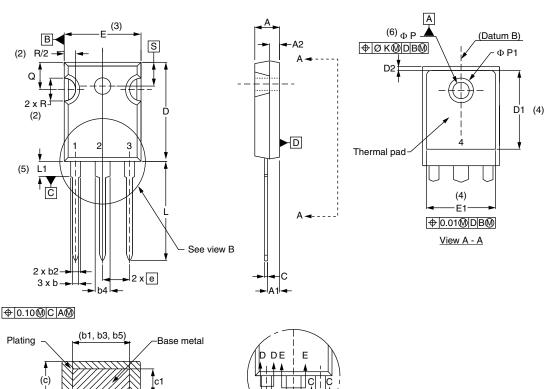
LINKS TO RELATED DOCUMENTS	
Dimensions	www.vishay.com/doc?95626
Part marking information	www.vishay.com/doc?95007

Package: L = long lead (TO-247AD)

-N3 = halogen-free, RoHS-compliant, and totally lead (Pb)-free

BASE QUANTITY

500


PACKAGING DESCRIPTION

Antistatic plastic tube

TO-247AD 3L

DIMENSIONS in millimeters and inches

Section C - C, D - D, E - E							
SYMBOL	MILLIN	IETERS	INCHES		NOTES		
STIVIDUL	MIN.	MAX.	MIN.	MAX.	NOTES		
Α	4.65	5.31	0.183	0.209			
A1	2.21	2.59	0.087	0.102			
A2	1.50	2.49	0.059	0.098			
b	0.99	1.40	0.039	0.055			

0.039

0.065

0.065

0.102

0.102

0.015

0.015

0.776

0.515

0.053

0.094

0.092

0.135

0.133

0.035

0.033

0.815

(h h2 h4)

:5	

View B

SYMBOL	IVIILLIIV	NOT			
OTMIDOL	MIN.	MAX.	MIN.	MAX.	NOTES
D2	0.51	1.30	0.020	0.051	
E	15.29	15.87	0.602	0.625	3
E1	13.46	-	0.53	-	
е	5.46	BSC	0.215	BSC	
ØΚ	0.254		0.0	10	
L	19.81	20.32	0.780	0.800	
L1	3.71	4.29	0.146	0.169	
ØΡ	3.56	3.66	0.14	0.144	
Ø P1	-	6.98	-	0.275	
Q	5.31	5.69	0.209	0.224	
R	4.52	5.49	0.178	0.216	
S	5.51	5.51 BSC		0.217 BSC	
•	•		•		•

INCHES

MILLIMETERS

Notes

b1

b2

b3

b4

b5

С

с1

D

D1

(1) Dimensioning and tolerancing per ASME Y14.5M-1994

1.35

2.39

2.34

3.43

3.38

0.89

0.84

20.70

- (2) Contour of slot optional
- (3) Dimension D and E do not include mold flash. These dimensions are measured at the outermost extremes of the plastic body

3

- (4) Thermal pad contour optional with dimensions D1 and E1
- (5) Lead finish uncontrolled in L1

0.99

1.65

1.65

2.59

2.59

0.38

0.38

19.71

13.08

- (6) Ø P to have a maximum draft angle of 1.5 to the top of the part with a maximum hole diameter of 3.91 mm (0.154")
- (7) Outline conforms to JEDEC® outline TO-247 with exception of dimension A min., D, E min., Q min., S, and note 4

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Vishay products are not designed for use in life-saving or life-sustaining applications or any application in which the failure of the Vishay product could result in personal injury or death unless specifically qualified in writing by Vishay. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.